In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The rate of oxide growth is often predicted by the Deal–Grove model. Thermal oxidation may be applied to different materials, but most commonly involves the oxidation of silicon substrates to produce silicon dioxide.
Thermal oxidation of silicon is usually performed at a temperature between 800 and 1200 °C, resulting in so called High Temperature Oxide layer (HTO). It may use either water vapor (usually UHP steam) or molecular oxygen as the oxidant; it is consequently called either wet or dry oxidation. The reaction is one of the following:
The oxidizing ambient may also contain several percent of hydrochloric acid (HCl). The chlorine removes metal ions that may occur in the oxide.
Thermal oxide incorporates silicon consumed from the substrate and oxygen supplied from the ambient. Thus, it grows both down into the wafer and up out of it. For every unit thickness of silicon consumed, 2.17 unit thicknesses of oxide will appear. If a bare silicon surface is oxidized, 46% of the oxide thickness will lie below the original surface, and 54% above it.
Deal-Grove model
According to the commonly used Deal-Grove model, the time τ required to grow an oxide of thickness Xo, at a constant temperature, on a bare silicon surface, is:
where the constants A and B relate to properties of the reaction and the oxide layer, respectively. This model has further been adapted to account for self-limiting oxidation processes, as used for the fabrication and morphological design of Si nanowires and other nanostructures.
If a wafer that already contains oxide is placed in an oxidizing ambient, this equation must be modified by adding a corrective term τ, the time that would have been required to grow the pre-existing oxide under current conditions. This term may be found using the equation for t above.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les étudiants savent expliquer la physique des composants semiconducteurs, tels que diodes, transistors et composants MOS. Ils les utilisent dans des circuits électroniques fondamentaux tels qu'invers
This course gives the basics for understanding nanotechnology from an engineer's perspective: physical background, materials aspects and scaling laws, fabrication and imaging of nanoscale devices.
A dopant (also called a doping agent) is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When doped into crystalline substances, the dopant's atoms get incorporated into its crystal lattice. The crystalline materials are frequently either crystals of a semiconductor such as silicon and germanium for use in solid-state electronics, or transparent crystals for use in the production of various laser types; however, in some cases of the latter, noncrystalline substances such as glass can also be doped with impurities.
Silicon nitride is a chemical compound of the elements silicon and nitrogen. Si3N4 (Trisilicon tetranitride) is the most thermodynamically stable and commercially important of the silicon nitrides, and the term ′′Silicon nitride′′ commonly refers to this specific composition. It is a white, high-melting-point solid that is relatively chemically inert, being attacked by dilute HF and hot H3PO4. It is very hard (8.5 on the mohs scale). It has a high thermal stability with strong optical nonlinearities for all-optical applications.
In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion.
We provide comprehensive experimental data and technology computer-aided design (TCAD) simulations to clarify total-ionizing-dose mechanisms in 16-nm Si FinFETs. In n-channel FinFETs irradiated to ultrahigh doses, the transconductance evolution rebounds (i ...
In this Tools of the Trade article, Francisco Lorenzo-Mart & iacute;n and Matthias Lutolf present mini-colons as a new ex vivo cancer model that incorporates microfabrication, tissue engineering and optogenetics. ...
Selective area epitaxy (SAE), applied to semiconductor growth, allows tailored fabrication of intricate structures at the nanoscale with enhanced properties and functionalities. In the field of nanowires (NWs), it adds scalability by enabling the fabricati ...