In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel. The most common example of frequency-division multiplexing is radio and television broadcasting, in which multiple radio signals at different frequencies pass through the air at the same time. Another example is cable television, in which many television channels are carried simultaneously on a single cable. FDM is also used by telephone systems to transmit multiple telephone calls through high capacity trunklines, communications satellites to transmit multiple channels of data on uplink and downlink radio beams, and broadband DSL modems to transmit large amounts of computer data through twisted pair telephone lines, among many other uses. An analogous technique called wavelength division multiplexing is used in fiber-optic communication, in which multiple channels of data are transmitted over a single optical fiber using different wavelengths (frequencies). The multiple separate information (modulation) signals that are sent over an FDM system, such as the video signals of the television channels that are sent over a cable TV system, are called baseband signals. At the source end, for each frequency channel, an electronic oscillator generates a carrier signal, a steady oscillating waveform at a single frequency that serves to "carry" information. The carrier is much higher in frequency than the baseband signal. The carrier signal and the baseband signal are combined in a modulator circuit. The modulator alters some aspect of the carrier signal, such as its amplitude, frequency, or phase, with the baseband signal, "piggybacking" the data onto the carrier.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
EE-442: Wireless receivers: algorithms and architectures
The students will learn about the basic principles of wireless communication systems, including transmission and modulation schemes as well as the basic components and algorithms of a wireless receive
COM-405: Mobile networks
This course provides a detailed description of the organization and operating principles of mobile and wireless communication networks.
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Show more
Related lectures (34)
Fading Channels: Model & Performance
Covers fading channels in wireless communication, discussing models, performance, diversity, and attenuation effects.
Ultrafast pulse characterization: optical techniques
Explores ultrafast pulse characterization using optical techniques, covering pulse propagation, measurement methods, and autocorrelation.
Piezoelectric Sensors: Doppler Effect Ultrasound Flow Meter
Explores piezoelectric sensors and the Doppler effect ultrasound flow meter.
Show more