In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.
The semiperimeter is used most often for triangles; the formula for the semiperimeter of a triangle with side lengths a, b, c
In any triangle, any vertex and the point where the opposite excircle touches the triangle partition the triangle's perimeter into two equal lengths, thus creating two paths each of which has a length equal to the semiperimeter. If A, B, B', C' are as shown in the figure, then the segments connecting a vertex with the opposite excircle tangency (, , , shown in red in the diagram) are known as splitters, and
The three splitters concur at the Nagel point of the triangle.
A cleaver of a triangle is a line segment that bisects the perimeter of the triangle and has one endpoint at the midpoint of one of the three sides. So any cleaver, like any splitter, divides the triangle into two paths each of whose length equals the semiperimeter. The three cleavers concur at the center of the Spieker circle, which is the incircle of the medial triangle; the Spieker center is the center of mass of all the points on the triangle's edges.
A line through the triangle's incenter bisects the perimeter if and only if it also bisects the area.
A triangle's semiperimeter equals the perimeter of its medial triangle.
By the triangle inequality, the longest side length of a triangle is less than the semiperimeter.
The area A of any triangle is the product of its inradius (the radius of its inscribed circle) and its semiperimeter:
The area of a triangle can also be calculated from its semiperimeter and side lengths a, b, c using Heron's formula:
The circumradius R of a triangle can also be calculated from the semiperimeter and side lengths:
This formula can be derived from the law of sines.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point. They are in contrast to parallel lines. In a triangle, four basic types of sets of concurrent lines are altitudes, angle bisectors, medians, and perpendicular bisectors: A triangle's altitudes run from each vertex and meet the opposite side at a right angle. The point where the three altitudes meet is the orthocenter. Angle bisectors are rays running from each vertex of the triangle and bisecting the associated angle.
In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals.
In geometry, a set of points are said to be concyclic (or cocyclic) if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined circumcircle. However, four or more points in the plane are not necessarily concyclic.
Characterization results for equality cases and for rigidity of equality cases in Steiner’s perimeter inequality are presented. (By rigidity, we mean the situation when all equality cases are vertical translations of the Steiner symmetral under considerati ...
2014
, , , ,
The original magnetic properties of nanometre-sized particles are due to the distinct contributions of volume, surface and step atoms. To disentangle these contributions is an ongoing challenge of materials science. Here we introduce a method enabling the ...
2003
This thesis reports results on magnetic properties of supported cobalt nanostructures. The nanostructures were grown on single crystal metal surface by Molecular Beam Epitaxy in an Ultra High Vacuum chamber. Our experimental setup is based on two in situ m ...