In mathematics, the Lambert W function, also called the omega function or product logarithm, is a multivalued function, namely the branches of the converse relation of the function f(w) = wew, where w is any complex number and ew is the exponential function.
For each integer k there is one branch, denoted by Wk(z), which is a complex-valued function of one complex argument. W0 is known as the principal branch. These functions have the following property: if z and w are any complex numbers, then
holds if and only if
When dealing with real numbers only, the two branches W0 and W−1 suffice: for real numbers x and y the equation
can be solved for y only if x ≥ −1/e; we get y = W0(x) if x ≥ 0 and the two values y = W0(x) and y = W−1(x) if −1/e ≤ x < 0.
The Lambert W relation cannot be expressed in terms of elementary functions. It is useful in combinatorics, for instance, in the enumeration of trees. It can be used to solve various equations involving exponentials (e.g. the maxima of the Planck, Bose–Einstein, and Fermi–Dirac distributions) and also occurs in the solution of delay differential equations, such as y′(t) = a y(t − 1). In biochemistry, and in particular enzyme kinetics, an opened-form solution for the time-course kinetics analysis of Michaelis–Menten kinetics is described in terms of the Lambert W function.
The Lambert W function is named after Johann Heinrich Lambert. The principal branch W0 is denoted Wp in the Digital Library of Mathematical Functions, and the branch W−1 is denoted Wm there.
The notation convention chosen here (with W0 and W−1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth.
The name "product logarithm" can be understood as this: Since the inverse function of f(w) = ew is called the logarithm, it makes sense to call the inverse "function" of the product wew as "product logarithm". (Technical note: like the complex logarithm, it is multivalued and thus W is described as the converse relation rather than inverse function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting
emphasis on theoretical models that help our unde
The dihydrogen cation or hydrogen molecular ion is a cation (positive ion) with formula H2+. It consists of two hydrogen nuclei (protons) sharing a single electron. It is the simplest molecular ion. The ion can be formed from the ionization of a neutral hydrogen molecule (H2) by electron impact. It is commonly formed in molecular clouds in space by the action of cosmic rays. The dihydrogen cation is of great historical, theoretical, and experimental interest.
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, including possibly their inverse functions (e.g., arcsin, log, or x1/n). All elementary functions are continuous on their domains. Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841.
In mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.
We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the ...
Transfer functions are constantly used in both Seismology and Geotechnical Earthquake Engineering to relate seismic ground motion at different depths within strata. In the context of diffusive theory, they also appear in the expression of the imaginary par ...
A correct representation of the lightning current is crucial when the electromagnetic field radiated to a point of interest has to be computed. Based on the engineering models of Transmission Line type, such representation involves the knowledge of the ret ...