In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D. Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring. The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refinement, where dominates if and . Every local ring in a field K is dominated by some valuation ring of K. An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain. There are several equivalent definitions of valuation ring (see below for the characterization in terms of dominance). For an integral domain D and its field of fractions K, the following are equivalent: For every nonzero x in K, either x is in D or x−1 is in D. The ideals of D are totally ordered by inclusion. The principal ideals of D are totally ordered by inclusion (i.e. the elements in D are, up to units, totally ordered by divisibility.) There is a totally ordered abelian group Γ (called the value group) and a valuation ν: K → Γ ∪ {∞} with D = { x ∈ K | ν(x) ≥ 0 }. The equivalence of the first three definitions follows easily. A theorem of states that any ring satisfying the first three conditions satisfies the fourth: take Γ to be the quotient K×/D× of the unit group of K by the unit group of D, and take ν to be the natural projection. We can turn Γ into a totally ordered group by declaring the residue classes of elements of D as "positive".

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
MATH-662: Perfectoid spaces
The course is about defining perfectoid spaces, and possibly presenting some applications.
MATH-494: Topics in arithmetic geometry
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
MATH-510: Algebraic geometry II - schemes and sheaves
The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.
Afficher plus
Séances de cours associées (32)
DVR et courbes d'avion irréductibles
Explore les anneaux d'évaluation discrets et leur rôle dans les courbes planes irréductibles.
Entiers et Anneaux
Couvre les entiers, les anneaux, les sous-anneaux, l'inversibilité, les diviseurs de zéro et les relations d'équivalence dans les fractions formelles.
Anneaux d'évaluation discrets
Explore les anneaux d'évaluation discrets, leurs propriétés, le caractère unique de la représentation et la relation avec les principaux domaines idéaux.
Afficher plus
Publications associées (26)

The multivariate Serre conjecture ring

Luc Guyot

It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
San Diego2023

Automated mixing of maximally localized Wannier functions into target manifolds

Nicola Marzari, Giovanni Pizzi, Junfeng Qiao

Maximally localized Wannier functions (MLWFs) are widely used in electronic-structure calculations. We have recently developed automated approaches to generate MLWFs that represent natural tight-binding sets of atomic-like orbitals; these describe accurate ...
Berlin2023

People's perceptions of the cultural ecosystem services of the Sava river in the Balkans: the contribution of participatory mapping

Constance Brouillet

Many rivers in the Balkan Peninsula are recognised at the European level for the biodiversity they host and their strong cultural heritage. However, they are experiencing significant anthropogenic changes, where their biodiversity and cultural values are o ...
2020
Afficher plus
Personnes associées (3)
Concepts associés (15)
Élément entier
En mathématiques, et plus particulièrement en algèbre commutative, les éléments entiers sur un anneau commutatif sont à la fois une généralisation des entiers algébriques (les éléments entiers sur l'anneau des entiers relatifs) et des éléments algébriques dans une extension de corps. C'est une notion très utile en théorie algébrique des nombres et en géométrie algébrique. Son émergence a commencé par l'étude des entiers quadratiques, en particulier les entiers de Gauss. On fixe un anneau commutatif A.
Complétion (algèbre)
En algèbre, une complétion est l'un des foncteurs sur les anneaux et les modules qui produit des anneaux topologiques et modules topologiques complets. La complétion est similaire à la localisation et, ensemble, ce sont des outils de base pour étudier les anneaux commutatifs. Les anneaux commutatifs complets ont une structure plus simple que les anneaux généraux, et on peut y appliquer le lemme de Hensel.
Anneau local régulier
En mathématiques, les anneaux réguliers forment une classe d'anneaux très utile en géométrie algébrique. Ce sont des anneaux qui localement sont les plus proches possibles des anneaux de polynômes sur un corps. Soit un anneau local noethérien d'idéal maximal . Soit son espace tangent de Zariski qui est un espace vectoriel de dimension finie sur le corps résiduel . Cette dimension est minorée par la dimension de Krull de l'anneau . On dit que est régulier s'il y a égalité entre ces deux dimensions : Par le lemme de Nakayama, cela équivaut à dire que est engendré par éléments.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.