In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A.
The appellation regular is justified by the geometric meaning. A point x on an algebraic variety X is nonsingular if and only if the local ring of germs at x is regular. (See also: regular scheme.) Regular local rings are not related to von Neumann regular rings.
For Noetherian local rings, there is the following chain of inclusions:
There are a number of useful definitions of a regular local ring, one of which is mentioned above. In particular, if is a Noetherian local ring with maximal ideal , then the following are equivalent definitions:
Let where is chosen as small as possible. Then is regular if
where the dimension is the Krull dimension. The minimal set of generators of are then called a regular system of parameters.
Let be the residue field of . Then is regular if
where the second dimension is the Krull dimension.
Let be the global dimension of (i.e., the supremum of the projective dimensions of all -modules.) Then is regular if
in which case, .
Multiplicity one criterion states: if the completion of a Noetherian local ring A is unimixed (in the sense that there is no embedded prime divisor of the zero ideal and for each minimal prime p, ) and if the multiplicity of A is one, then A is regular. (The converse is always true: the multiplicity of a regular local ring is one.) This criterion corresponds to a geometric intuition in algebraic geometry that a local ring of an intersection is regular if and only if the intersection is a transversal intersection.
In the positive characteristic case, there is the following important result due to Kunz: A Noetherian local ring of positive characteristic p is regular if and only if the Frobenius morphism is flat and is reduced.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain R which satisfies any one of the following equivalent conditions: R is a local principal ideal domain, and not a field. R is a valuation ring with a value group isomorphic to the integers under addition. R is a local Dedekind domain and not a field. R is a Noetherian local domain whose maximal ideal is principal, and not a field.
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent.
In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D. Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring.
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
Covers the dimension theory of rings, including additivity of dimension and height, Krull's Hauptidealsatz, and the height of general complete intersections.
Covers the properties of harmonic functions, focusing on the mean value property and the maximum principle.
,
We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...
We continue our work, started in [9], on the program of classifying triples (X, Y, V), where X, Yare simple algebraic groups over an algebraically closed field of characteristic zero with X < Y, and Vis an irreducible module for Y such that the restriction ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension