Richard DedekindJulius Wilhelm Richard Dedekind ˈdeːdəˌkɪnt (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His best known contribution is the definition of real numbers through the notion of Dedekind cut. He is also considered a pioneer in the development of modern set theory and of the philosophy of mathematics known as Logicism.
Valuation (algebra)In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry.
Product of ringsIn mathematics, a product of rings or direct product of rings is a ring that is formed by the Cartesian product of the underlying sets of several rings (possibly an infinity), equipped with componentwise operations. It is a direct product in the . Since direct products are defined up to an isomorphism, one says colloquially that a ring is the product of some rings if it is isomorphic to the direct product of these rings.
Universal propertyIn mathematics, more specifically in , a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties.
Local fieldIn mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below.
Bézout domainIn mathematics, a Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two principal ideals is again a principal ideal. This means that for every pair of elements a Bézout identity holds, and that every finitely generated ideal is principal. Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals (which obviously excludes being a PID); if so, it is not a unique factorization domain (UFD), but still is a GCD domain.
Conductor (class field theory)In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map. Let L/K be a finite abelian extension of non-archimedean local fields. The conductor of L/K, denoted , is the smallest non-negative integer n such that the higher unit group is contained in NL/K(L×), where NL/K is field norm map and is the maximal ideal of K.
Hermite–Minkowski theoremIn mathematics, especially in algebraic number theory, the Hermite–Minkowski theorem states that for any integer N there are only finitely many number fields, i.e., finite field extensions K of the rational numbers Q, such that the discriminant of K/Q is at most N. The theorem is named after Charles Hermite and Hermann Minkowski. This theorem is a consequence of the estimate for the discriminant where n is the degree of the field extension, together with Stirling's formula for n!.
Gauss sumIn algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically where the sum is over elements r of some finite commutative ring R, ψ is a group homomorphism of the additive group R+ into the unit circle, and χ is a group homomorphism of the unit group R× into the unit circle, extended to non-unit r, where it takes the value 0. Gauss sums are the analogues for finite fields of the Gamma function. Such sums are ubiquitous in number theory.
Graded ringIn mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading. A graded module is defined similarly (see below for the precise definition). It generalizes graded vector spaces. A graded module that is also a graded ring is called a graded algebra.