Summary
In mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at least 250 years, the first examples of non-Archimedean local fields, the fields of p-adic numbers for positive prime integer p, were introduced by Kurt Hensel at the end of the 19th century. Every local field is isomorphic (as a topological field) to one of the following: Archimedean local fields (characteristic zero): the real numbers R, and the complex numbers C. Non-Archimedean local fields of characteristic zero: finite extensions of the p-adic numbers Qp (where p is any prime number). Non-Archimedean local fields of characteristic p (for p any given prime number): the field of formal Laurent series Fq((T)) over a finite field Fq, where q is a power of p. In particular, of importance in number theory, classes of local fields show up as the completions of algebraic number fields with respect to their discrete valuation corresponding to one of their maximal ideals. Research papers in modern number theory often consider a more general notion, requiring only that the residue field be perfect of positive characteristic, not necessarily finite.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (77)
PHYS-595: Engineering internship (master in nuclear engineering)
The main objective of the 12-week internship is to expose master's students to the industrial work environment within the field of nuclear energy.
MATH-417: Number theory II.b - selected topics
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
PHYS-462: Quantum transport in mesoscopic systems
This course will focus on the electron transport in semiconductors, with emphasis on the mesoscopic systems. The aim is to understand the transport of electrons in low dimensional systems, where even
Show more