Richard DedekindJulius Wilhelm Richard Dedekind (né le à Brunswick et mort le dans la même ville) est un mathématicien allemand et un proche disciple de Ernst Kummer en arithmétique. Pionnier de l'axiomatisation de l'arithmétique, il a proposé une définition axiomatique de l'ensemble des nombres entiers ainsi qu’une construction rigoureuse des nombres réels à partir des nombres rationnels (méthode des « coupures » de Dedekind).
ValuationEn mathématiques, plus particulièrement en géométrie algébrique et en théorie des nombres, une valuation, ou valuation de Krull, est une mesure de la multiplicité. La notion est une généralisation de la notion de degré ou d'ordre d'annulation d'un polynôme formel en algèbre, du degré de divisibilité par un nombre premier en théorie des nombres, de l'ordre d'un pôle en analyse complexe ou du nombre de points de contact entre deux variétés algébriques en géométrie algébrique.
Produit d'anneauxEn algèbre générale, il est possible de combiner plusieurs anneaux pour former un anneau appelé anneau produit. Cette construction peut se faire de la manière suivante : si (Ai) est une famille d'anneaux, le produit cartésien Π Ai peut être muni d'une structure d'anneau en définissant les opérations composante par composante, i.e. (ai) + (bi) = (ai + bi) (ai) · (bi) = (ai · bi) 1 = (1) À la place de Π1≤i≤k Ai nous pouvons aussi écrire A1 × A2 × ... × Ak. Un exemple est l'anneau Z/nZ des entiers modulo n.
Propriété universelleEn mathématiques, et plus précisément en théorie des catégories, une propriété universelle est la propriété des objets qui sont la solution d'un problème universel posé par un foncteur. De très nombreux objets classiques des mathématiques, comme la notion de produit cartésien, de groupe quotient, ou de compactifié, peuvent être définis comme des solutions de problèmes universels.
Corps localEn mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local.
Anneau de BézoutEn algèbre commutative, un anneau quasi-bézoutien est un anneau où la propriété de Bézout est vérifiée ; plus formellement, c'est un anneau dans lequel tout idéal de type fini est principal. Un anneau de Bézout, ou anneau bézoutien, est un anneau quasi-bézoutien intègre. Un idéal de type fini est un idéal engendré par un nombre fini d'éléments. Un idéal engendré par un élément a est dit idéal principal et se note aA. Un idéal engendré par deux éléments a et b se note aA + bA, il est constitué des éléments de A pouvant s'écrire sous la forme au + bv avec u et v éléments de A.
Conducteur (théorie du corps de classes)En théorie algébrique des nombres, le conducteur d'une extension abélienne finie de corps locaux ou globaux fournit une mesure quantitative de la ramification dans l'extension. La définition du conducteur est liée à la réciprocité d'Artin. Soit L/K une extension abélienne finie de corps locaux non-archimédiens. Le conducteur de L/K, noté , est le plus petit entier non négatif n tel que le groupe unitaire supérieur est contenu dans NL/K(L×), où NL/K est la norme et est l'idéal maximal de K.
Théorème d'Hermite-MinkowskiEn mathématiques, et plus particulièrement en théorie algébrique des nombres, le théorème d'Hermite-Minkowski stipule que pour tout entier N, il n'y a qu'un nombre fini de corps de nombres, c'est-à-dire d'extensions finies K du corps Q des nombres rationnels, tels que le discriminant de K est au plus N. Le théorème porte le nom de Charles Hermite et Hermann Minkowski. Ce théorème est une conséquence de la majoration du discriminant où n est le degré d'extension de corps, ainsi que la formule de Stirling pour n!.
Somme de GaussEn mathématiques, et plus précisément en arithmétique modulaire, une somme de Gauss est un nombre complexe dont la définition utilise les outils de l'analyse harmonique sur un groupe abélien fini sur le corps fini Z/pZ où p désigne un nombre premier impair et Z l'ensemble des entiers relatifs. Elles ont été introduites par le mathématicien Carl Friedrich Gauss dans ses Disquisitiones arithmeticae, parues en 1801. On peut citer par exemple une démonstration de la loi de réciprocité quadratique.
Algèbre graduéevignette|Un organigramme de diverses structures algébriques et leurs relations les unes avec les autres. En mathématiques, en algèbre linéaire, on appelle algèbre graduée une algèbre dotée d'une structure supplémentaire, appelée graduation. Soit A une algèbre sur un corps (ou plus généralement sur un anneau) K. Une graduation sur A est la donnée d’une famille de sous-espaces vectoriels de A vérifiant : c'est-à-dire que . L’algèbre A est alors dite graduée (parfois N-graduée, comme cas particulier de la notion d'algèbre M-graduée pour un monoïde M).