Generalized flag varietyIn mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space V over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complex flag manifold. Flag varieties are naturally projective varieties. Flag varieties can be defined in various degrees of generality. A prototype is the variety of complete flags in a vector space V over a field F, which is a flag variety for the special linear group over F.
Stable homotopy theoryIn mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space , the homotopy groups stabilize for sufficiently large. In particular, the homotopy groups of spheres stabilize for . For example, In the two examples above all the maps between homotopy groups are applications of the suspension functor.
Surgery theoryIn mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable (or, smooth) manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.
Brown's representability theoremIn mathematics, Brown's representability theorem in homotopy theory gives necessary and sufficient conditions for a contravariant functor F on the Hotc of pointed connected CW complexes, to the Set, to be a representable functor. More specifically, we are given F: Hotcop → Set, and there are certain obviously necessary conditions for F to be of type Hom(—, C), with C a pointed connected CW-complex that can be deduced from alone. The statement of the substantive part of the theorem is that these necessary conditions are then sufficient.
Presheaf (category theory)In , a branch of mathematics, a presheaf on a is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space. A morphism of presheaves is defined to be a natural transformation of functors. This makes the collection of all presheaves on into a category, and is an example of a . It is often written as . A functor into is sometimes called a profunctor.
Sheaf of modulesIn mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U). The standard case is when X is a scheme and O its structure sheaf. If O is the constant sheaf , then a sheaf of O-modules is the same as a sheaf of abelian groups (i.
Leopold VietorisLeopold Vietoris (viːˈtoʊrɪs; viːˈtoːʀɪs; 4 June 1891 – 9 April 2002) was an Austrian mathematician, World War I veteran and supercentenarian. He was born in Radkersburg and died in Innsbruck. He was known for his contributions to topology—notably the Mayer–Vietoris sequence—and other fields of mathematics, his interest in mathematical history and for being a keen alpinist. Vietoris studied mathematics and geometry at the Vienna University of Technology. He was drafted in 1914 in World War I and was wounded in September that same year.
Eilenberg–MacLane spaceIn mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group. Let G be a group and n a positive integer. A connected topological space X is called an Eilenberg–MacLane space of type , if it has n-th homotopy group isomorphic to G and all other homotopy groups trivial. Assuming that G is abelian in the case that , Eilenberg–MacLane spaces of type always exist, and are all weak homotopy equivalent.
Invariant (mathematics)In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used.
Cohomology operationIn mathematics, the cohomology operation concept became central to algebraic topology, particularly homotopy theory, from the 1950s onwards, in the shape of the simple definition that if F is a functor defining a cohomology theory, then a cohomology operation should be a natural transformation from F to itself. Throughout there have been two basic points: the operations can be studied by combinatorial means; and the effect of the operations is to yield an interesting bicommutant theory.