In , a branch of mathematics, a presheaf on a is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.
A morphism of presheaves is defined to be a natural transformation of functors. This makes the collection of all presheaves on into a category, and is an example of a . It is often written as . A functor into is sometimes called a profunctor.
A presheaf that is naturally isomorphic to the contravariant hom-functor Hom(–, A) for some A of C is called a representable presheaf.
Some authors refer to a functor as a -valued presheaf.
A simplicial set is a Set-valued presheaf on the .
When is a , the functor category is cartesian closed.
The poset of subobjects of form a Heyting algebra, whenever is an object of for small .
For any morphism of , the pullback functor of subobjects has a right adjoint, denoted , and a left adjoint, . These are the universal and existential quantifiers.
A locally small category embeds fully and faithfully into the category of set-valued presheaves via the Yoneda embedding which to every object of associates the hom functor .
The category admits small and small colimits. See limit and colimit of presheaves for further discussion.
The states that every presheaf is a colimit of representable presheaves; in fact, is the colimit completion of (see #Universal property below.)
The construction is called the colimit completion of C because of the following universal property:
Proof: Given a presheaf F, by the , we can write where are objects in C. Then let which exists by assumption. Since is functorial, this determines the functor . Succinctly, is the left Kan extension of along y; hence, the name "Yoneda extension". To see commutes with small colimits, we show is a left-adjoint (to some functor). Define to be the functor given by: for each object M in D and each object U in C,
Then, for each object M in D, since by the Yoneda lemma, we have:
which is to say is a left-adjoint to .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, a topos (USˈtɒpɒs, UKˈtoʊpoʊs,_ˈtoʊpɒs; plural topoi ˈtɒpɔɪ or ˈtoʊpɔɪ, or toposes) is a that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory.
In mathematics, specifically in , hom-sets (i.e. sets of morphisms between ) give rise to important functors to the . These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Let C be a (i.e. a for which hom-classes are actually sets and not proper classes). For all objects A and B in C we define two functors to the as follows: {| class=wikitable |- ! Hom(A, –) : C → Set ! Hom(–, B) : C → Set |- | This is a covariant functor given by: Hom(A, –) maps each object X in C to the set of morphisms, Hom(A, X) Hom(A, –) maps each morphism f : X → Y to the function Hom(A, f) : Hom(A, X) → Hom(A, Y) given by for each g in Hom(A, X).
In mathematics, particularly , a representable functor is a certain functor from an arbitrary into the . Such functors give representations of an abstract category in terms of known structures (i.e. sets and functions) allowing one to utilize, as much as possible, knowledge about the category of sets in other settings. From another point of view, representable functors for a category C are the functors given with C. Their theory is a vast generalisation of upper sets in posets, and of Cayley's theorem in group theory.
In this article we introduce the notion of emphmulti-Koszul algebra for the case of a locally finite dimensional nonnegatively graded connected algebra, as a generalization of the notion of (generalized) Koszul algebras defined by R. Berger for homogeneous ...
2013
This thesis, which presents a new approach to the algebraic K-theory, is divided into two parts. The first one is devoted to the category of small simplicial categories. First, we construct a new model structure on sCat = [Δop,Cat] which is called the diag ...
In this work we study the oriented Chow groups. These groups were defined by J. Barge et F. Morel in order to understand when a projective module P of top rank over a ring A has a free factor of rank one, i.e is isomorphic to Q ⊕ A. We show first that thes ...