In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class.
Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important step in the process of classifying mathematical objects.
A simple example of invariance is expressed in our ability to count. For a finite set of objects of any kind, there is a number to which we always arrive, regardless of the order in which we count the objects in the set. The quantity—a cardinal number—is associated with the set, and is invariant under the process of counting.
An identity is an equation that remains true for all values of its variables. There are also inequalities that remain true when the values of their variables change.
The distance between two points on a number line is not changed by adding the same quantity to both numbers. On the other hand, multiplication does not have this same property, as distance is not invariant under multiplication.
Angles and ratios of distances are invariant under scalings, rotations, translations and reflections. These transformations produce similar shapes, which is the basis of trigonometry. In contrast, angles and ratios are not invariant under non-uniform scaling (such as stretching).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course instructs students in the use of advanced computational models and simulations in cell biology. The importance of dimensionality, symmetry and conservation in models of self-assembly, memb
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on a plane, in contrast to solid 3D shapes. A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved surface (a non-Euclidean two-dimensional space). Lists of shapes Some simple shapes can be put into broad categories.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Burnside's lemma, sometimes also called Burnside's counting theorem, the Cauchy–Frobenius lemma, the orbit-counting theorem, or the lemma that is not Burnside's, is a result in group theory that is often useful in taking account of symmetry when counting mathematical objects. Its various eponyms are based on William Burnside, George Pólya, Augustin Louis Cauchy, and Ferdinand Georg Frobenius. The result is not due to Burnside himself, who merely quotes it in his book 'On the Theory of Groups of Finite Order', attributing it instead to .
It has long been postulated that within density-functional theory (DFT), the total energy of a finite electronic system is convex with respect to electron count so that 2E(v)[N-0]
By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
Topological nature in different areas of physics and electronics has often been characterized and controlled through topological invariants depending on the global properties of the material. The validity of bulk-edge correspondence and symmetry-related to ...