In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U). The standard case is when X is a scheme and O its structure sheaf. If O is the constant sheaf , then a sheaf of O-modules is the same as a sheaf of abelian groups (i.e., an abelian sheaf). If X is the prime spectrum of a ring R, then any R-module defines an OX-module (called an associated sheaf) in a natural way. Similarly, if R is a graded ring and X is the Proj of R, then any graded module defines an OX-module in a natural way. O-modules arising in such a fashion are examples of quasi-coherent sheaves, and in fact, on affine or projective schemes, all quasi-coherent sheaves are obtained this way. Sheaves of modules over a ringed space form an . Moreover, this category has enough injectives, and consequently one can and does define the sheaf cohomology as the i-th right derived functor of the global section functor . Given a ringed space (X, O), if F is an O-submodule of O, then it is called the sheaf of ideals or ideal sheaf of O, since for each open subset U of X, F(U) is an ideal of the ring O(U). Let X be a smooth variety of dimension n. Then the tangent sheaf of X is the dual of the cotangent sheaf and the canonical sheaf is the n-th exterior power (determinant) of . A sheaf of algebras is a sheaf of module that is also a sheaf of rings. Let (X, O) be a ringed space. If F and G are O-modules, then their tensor product, denoted by or , is the O-module that is the sheaf associated to the presheaf (To see that sheafification cannot be avoided, compute the global sections of where O(1) is Serre's twisting sheaf on a projective space.) Similarly, if F and G are O-modules, then denotes the O-module that is the sheaf . In particular, the O-module is called the dual module of F and is denoted by .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
CIVIL-324: Urban public transport systems
An introduction to urban public transport systems. The lectures cover the planning, operation, and management problems of different types of public transport services, along with assignments strengthe
MATH-510: Algebraic geometry II - schemes and sheaves
The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.
BIO-413: Planetary health
This course provides an overview of global environmental change through the perspective of the planetary boundaries and examines how human health is interlinked with social and ecological contexts.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.