Concurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts.
This is a property of a system—whether a program, computer, or a network—where there is a separate execution point or "thread of control" for each process. A concurrent system is one where a computation can advance without waiting for all other computations to complete.
Concurrent computing is a form of modular programming. In its paradigm an overall computation is factored into subcomputations that may be executed concurrently. Pioneers in the field of concurrent computing include Edsger Dijkstra, Per Brinch Hansen, and C.A.R. Hoare.
Parallel computing
The concept of concurrent computing is frequently confused with the related but distinct concept of parallel computing, although both can be described as "multiple processes executing during the same period of time". In parallel computing, execution occurs at the same physical instant: for example, on separate processors of a multi-processor machine, with the goal of speeding up computations—parallel computing is impossible on a (one-core) single processor, as only one computation can occur at any instant (during any single clock cycle). By contrast, concurrent computing consists of process lifetimes overlapping, but execution need not happen at the same instant. The goal here is to model processes in the outside world that happen concurrently, such as multiple clients accessing a server at the same time. Structuring software systems as composed of multiple concurrent, communicating parts can be useful for tackling complexity, regardless of whether the parts can be executed in parallel.
For example, concurrent processes can be executed on one core by interleaving the execution steps of each process via time-sharing slices: only one process runs at a time, and if it does not complete during its time slice, it is paused, another process begins or resumes, and then later the original process is resumed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
From sensors,to smart phones,to the world's largest datacenters and supercomputers, parallelism & concurrency is ubiquitous in modern computing.There are also many forms of parallel & concurrent execu
Course no longer offered for new students; this edition is only a make-up course for those who repeated the year. Please log in with EPFL credentials and consult the mediaspace link below for course v
Edsger Wybe Dijkstra (ˈdaɪkstrə ; ˈɛtsxər ˈʋibə ˈdɛikstra; 11 May 1930 – 6 August 2002) was a Dutch computer scientist, programmer, software engineer, and science essayist. Born in Rotterdam, the Netherlands, Dijkstra studied mathematics and physics and then theoretical physics at the University of Leiden. Adriaan van Wijngaarden offered him a job as the first computer programmer in the Netherlands at the Mathematical Center in Amsterdam, where he worked from 1952 until 1962.
In software engineering, a pipeline consists of a chain of processing elements (processes, threads, coroutines, functions, etc.), arranged so that the output of each element is the input of the next; the name is by analogy to a physical pipeline. Usually some amount of buffering is provided between consecutive elements. The information that flows in these pipelines is often a stream of records, bytes, or bits, and the elements of a pipeline may be called filters; this is also called the pipe(s) and filters design pattern.
In computer science, message passing is a technique for invoking behavior (i.e., running a program) on a computer. The invoking program sends a message to a process (which may be an actor or object) and relies on that process and its supporting infrastructure to then select and run some appropriate code. Message passing differs from conventional programming where a process, subroutine, or function is directly invoked by name. Message passing is key to some models of concurrency and object-oriented programming.
In computer science, a high-level programming language is a programming language with strong abstraction from the details of the computer. In contrast to low-level programming languages, it may use natural language elements, be easier to use, or may automate (or even hide entirely) significant areas of computing systems (e.g. memory management), making the process of developing a program simpler and more understandable than when using a lower-level language. The amount of abstraction provided defines how "high-level" a programming language is.
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Real-time computing (RTC) is the computer science term for hardware and software systems subject to a "real-time constraint", for example from event to system response. Real-time programs must guarantee response within specified time constraints, often referred to as "deadlines". Real-time responses are often understood to be in the order of milliseconds, and sometimes microseconds. A system not specified as operating in real time cannot usually guarantee a response within any timeframe, although typical or expected response times may be given.
Computer systems rely heavily on abstraction to manage the exponential growth of complexity across hardware and software. Due to practical considerations of compatibility between components of these complex systems across generations, developers have favou ...
Data races have long been a notorious problem in concurrent programming. They are subtle to detect, and lead to non-deterministic behaviours. There has been a lot of interest in type systems that statically guarantee data race freedom. Significant progress ...
2024
, ,
Enterprises collect data in large volumes and leverage them to drive numerous concurrent decisions and business processes. Their teams deploy multiple applications that often operate concurrently on the same data and infrastructure but have widely differen ...