In computer science, the process calculi (or process algebras) are a diverse family of related approaches for formally modelling concurrent systems. Process calculi provide a tool for the high-level description of interactions, communications, and synchronizations between a collection of independent agents or processes. They also provide algebraic laws that allow process descriptions to be manipulated and analyzed, and permit formal reasoning about equivalences between processes (e.g., using bisimulation). Leading examples of process calculi include CSP, CCS, ACP, and LOTOS. More recent additions to the family include the π-calculus, the ambient calculus, PEPA, the fusion calculus and the join-calculus. While the variety of existing process calculi is very large (including variants that incorporate stochastic behaviour, timing information, and specializations for studying molecular interactions), there are several features that all process calculi have in common: Representing interactions between independent processes as communication (message-passing), rather than as modification of shared variables. Describing processes and systems using a small collection of primitives, and operators for combining those primitives. Defining algebraic laws for the process operators, which allow process expressions to be manipulated using equational reasoning. To define a process calculus, one starts with a set of names (or channels) whose purpose is to provide means of communication. In many implementations, channels have rich internal structure to improve efficiency, but this is abstracted away in most theoretic models. In addition to names, one needs a means to form new processes from old ones. The basic operators, always present in some form or other, allow: parallel composition of processes specification of which channels to use for sending and receiving data sequentialization of interactions hiding of interaction points recursion or process replication Parallel composition of two processes and , usually written , is the key primitive distinguishing the process calculi from sequential models of computation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
EE-207: Logic systems (for EL)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuits combinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de sy
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
CS-451: Distributed algorithms
Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machin
Show more
Related publications (61)
Related concepts (16)
Calculus of communicating systems
The calculus of communicating systems (CCS) is a process calculus introduced by Robin Milner around 1980 and the title of a book describing the calculus. Its actions model indivisible communications between exactly two participants. The formal language includes primitives for describing parallel composition, choice between actions and scope restriction. CCS is useful for evaluating the qualitative correctness of properties of a system such as deadlock or livelock.
Π-calculus
In theoretical computer science, the pi-calculus (or pi-calculus) is a process calculus. The pi-calculus allows channel names to be communicated along the channels themselves, and in this way it is able to describe concurrent computations whose network configuration may change during the computation. The pi-calculus has few terms and is a small, yet expressive language (see ). Functional programs can be encoded into the pi-calculus, and the encoding emphasises the dialogue nature of computation, drawing connections with game semantics.
Concurrency (computer science)
In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.