Starter (engine)A starter (also self-starter, cranking motor, or starter motor) is a device used to rotate (crank) an internal-combustion engine so as to initiate the engine's operation under its own power. Starters can be electric, pneumatic, or hydraulic. The starter can also be another internal-combustion engine in the case, for instance, of very large engines, or diesel engines in agricultural or excavation applications. Internal combustion engines are feedback systems, which, once started, rely on the inertia from each cycle to initiate the next cycle.
FlywheelA flywheel is a mechanical device which uses the conservation of angular momentum to store rotational energy; a form of kinetic energy proportional to the product of its moment of inertia and the square of its rotational speed. In particular, assuming the flywheel's moment of inertia is constant (i.e., a flywheel with fixed mass and second moment of area revolving about some fixed axis) then the stored (rotational) energy is directly associated with the square of its rotational speed.
Engine efficiencyEngine efficiency of thermal engines is the relationship between the total energy contained in the fuel, and the amount of energy used to perform useful work. There are two classifications of thermal engines- Internal combustion (gasoline, diesel and gas turbine-Brayton cycle engines) and External combustion engines (steam piston, steam turbine, and the Stirling cycle engine). Each of these engines has thermal efficiency characteristics that are unique to it.
Truck classificationTruck classifications are typically based upon the maximum loaded weight of the truck, typically using the gross vehicle weight rating (GVWR) and sometimes also the gross trailer weight rating (GTWR), and can vary among jurisdictions. In the United States, commercial truck classification is determined based on the vehicle's gross vehicle weight rating (GVWR). The classes are numbered 1 through 8. Trucks are also classified more broadly by the Federal Highway Administration (FHWA), which groups classes 1 and 2 as light duty, 3 through 6 as medium duty, and 7 and 8 as heavy duty.
Engine configurationThe engine configuration describes the fundamental operating principles by which internal combustion engines are categorized. Piston engines are often categorized by their cylinder layout, valves and camshafts. Wankel engines are often categorized by the number of rotors present. Gas turbine engines are often categorized into turbojets, turbofans, turboprops and turboshafts. Piston engines are usually designed with the cylinders in lines parallel to the crankshaft.
Ignition coilAn ignition coil is used in the ignition system of a spark-ignition engine to transform the battery voltage to the much higher voltages required to operate the spark plug(s). The spark plugs then use this burst of high-voltage electricity to ignite the air-fuel mixture. The ignition coil is constructed of two sets of coils wound around an iron core. Older engines often use a single ignition coil which has its output directed to each cylinder by a distributor, a design which is still used by various small engines (such as lawnmower engines).
Engine balanceEngine balance refers to how the forces (resulting from combustion or rotating/reciprocating components) are balanced within an internal combustion engine or steam engine. The most commonly used terms are primary balance and secondary balance. First-order balance and second-order balance are also used. Unbalanced forces within the engine can lead to vibrations. Although some components within the engine (such as the connecting rods) have complex motions, all motions can be separated into reciprocating and rotating components, which assists in the analysis of imbalances.
Gas engineA gas engine is an internal combustion engine that runs on a gaseous fuel, such as coal gas, producer gas, biogas, landfill gas, natural gas or hydrogen. In the United Kingdom and British English-speaking countries, the term is unambiguous. In the United States, due to the widespread use of "gas" as an abbreviation for gasoline (petrol), such an engine might also be called a gaseous-fueled engine or natural gas engine or spark ignited.
Engine tuningEngine tuning is the adjustment or modification of the internal combustion engine or Engine Control Unit (ECU) to yield optimal performance and increase the engine's power output, economy, or durability. These goals may be mutually exclusive; an engine may be de-tuned with respect to output power in exchange for better economy or longer engine life due to lessened stress on engine components. Tuning can include a wide variety of adjustments and modifications, such as the routine adjustment of the carburetor and ignition system to significant engine overhauls.