This thesis is a study of the global well-posedness of the Cauchy problems for half-wave maps from the Minkowski space of dimension n+1 to the 2-dimensional sphere and the hyperbolic plane. The work is mainly based on the results from Krieger-Sire 17' in ...
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...
Graph sparsification has been studied extensively over the past two decades, culminating in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsification is a natural analogue of this problem, for which optimal bounds on ...
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
The goal of this thesis is the development and the analysis of numerical methods for problems where the unknown is a curve on a smooth manifold. In particular, the thesis is structured around the three following problems: homotopy continuation, curve inter ...
Consider CLE4 in the unit disk, and let l be the loop of the CLE4 surrounding the origin. Schramm, Sheffield and Wilson determined the law of the conformal radius seen from the origin of the domain surrounded by l. We complement their result by determining ...
Elastic surfaces that morph between multiple geometrical configurations are of significant engineering value, with applications ranging from the deployment of space-based PV arrays, the erection of temporary shelters, and the realization of flexible displa ...
We obtain new Fourier interpolation and uniqueness results in all dimensions, extending methods and results by the first author and M. Sousa [11] and the second author [12]. We show that the only Schwartz function which, together with its Fourier transform ...
In the framework of Scale Relativity Theory, by analyzing dynamics of complex system structural units based on multifractal curves, both Schrodinger and Madelung approaches are functional and complementary. The Madelung selected approach involve synchronou ...
Collapsing cell complexes was first introduced in the 1930's as a way to deform a space into a topological-equivalent subspace with a sequence of elementary moves. Recently, discrete Morse theory techniques provided an efficient way to construct deformatio ...