C-symmetryIn physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry (time reversal).
T-symmetryT-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal, Since the second law of thermodynamics states that entropy increases as time flows toward the future, in general, the macroscopic universe does not show symmetry under time reversal. In other words, time is said to be non-symmetric, or asymmetric, except for special equilibrium states when the second law of thermodynamics predicts the time symmetry to hold.
CPT symmetryCharge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry.
Charm (quantum number)Charm (symbol C) is a flavour quantum number representing the difference between the number of charm quarks (_charm quark) and charm antiquarks (_Charm antiquark) that are present in a particle: By convention, the sign of flavour quantum numbers agree with the sign of the electric charge carried by the quarks of corresponding flavour. The charm quark, which carries an electric charge (Q) of +, therefore carries a charm of +1. The charm antiquarks have the opposite charge (Q = −), and flavour quantum numbers (C = −1).
Weak hyperchargeIn the Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently denoted and corresponds to the gauge symmetry U(1). It is conserved (only terms that are overall weak-hypercharge neutral are allowed in the Lagrangian). However, one of the interactions is with the Higgs field. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum.
Weak isospinIn particle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the _W boson+- bosons; particles with zero weak isospin do not. Weak isospin is a construct parallel to the idea of isospin under the strong interaction. Weak isospin is usually given the symbol T or I, with the third component written as T_3 or I_3. It can be understood as the eigenvalue of a charge operator.
C parityIn physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation. Charge conjugation changes the sign of all quantum charges (that is, additive quantum numbers), including the electrical charge, baryon number and lepton number, and the flavor charges strangeness, charm, bottomness, topness and Isospin (I3). In contrast, it doesn't affect the mass, linear momentum or spin of a particle.
B mesonIn particle physics, B mesons are mesons composed of a bottom antiquark and either an up (_B+), down (_B0), strange (_Strange B0) or charm quark (_Charmed B+). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark's short lifetime. The combination of a bottom antiquark and a bottom quark is not a B meson, but rather bottomonium, which is something else entirely. Each B meson has an antiparticle that is composed of a bottom quark and an up (_B-), down (_AntiB0), strange (_Strange antiB0) or charm (_Charmed b-) antiquark respectively.
AcoplanarityIn particle physics, the acoplanarity of a scattering experiment measures the degree to which the paths of the scattered particles deviate from being coplanar. Measurements of acoplanarity provide a test of perturbative quantum chromodynamics, because QCD predicts that the emission of gluons can lead to acoplanar scattering events. For a two-jet final state, a useful measure of acoplanarity is where are the azimuthal angles of the final state jets with respect to the beam line.
QuarkoniumIn particle physics, quarkonium (from quark and -onium, pl. quarkonia) is a flavorless meson whose constituents are a heavy quark and its own antiquark, making it both a neutral particle and its own antiparticle. The name "quarkonium" is analogous to positronium, the bound state of electron and anti-electron. The particles are short-lived due to matter-antimatter annihilation. Vector meson Light quarks (up, down, and strange) are much less massive than the heavier quarks, and so the physical states actually seen in experiments (η, η′, and π0 mesons) are quantum mechanical mixtures of the light quark states.