**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Weak hypercharge

Summary

In the Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently denoted and corresponds to the gauge symmetry U(1).
It is conserved (only terms that are overall weak-hypercharge neutral are allowed in the Lagrangian). However, one of the interactions is with the Higgs field. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. This changes their weak hypercharge (and weak isospin T3). Only a specific combination of them, (electric charge), is conserved.
Mathematically, weak hypercharge appears similar to the Gell-Mann–Nishijima formula for the hypercharge of strong interactions (which is not conserved in weak interactions and is zero for leptons).
In the electroweak theory SU(2) transformations commute with U(1) transformations by definition and therefore U(1) charges for the elements of the SU(2) doublet (for example lefthanded up and down quarks) have to be equal. This is why U(1) cannot be identified with U(1)em and weak hypercharge has to be introduced.
Weak hypercharge was first introduced by Sheldon Glashow in 1961.
Weak hypercharge is the generator of the U(1) component of the electroweak gauge group, SU(2) × U(1) and its associated quantum field B mixes with the W^3 electroweak quantum field to produce the observed _Z boson gauge boson and the photon of quantum electrodynamics.
The weak hypercharge satisfies the relation
where Q is the electric charge (in elementary charge units) and T_3 is the third component of weak isospin (the SU(2) component).
Rearranging, the weak hypercharge can be explicitly defined as:
where "left"- and "right"-handed here are left and right chirality, respectively (distinct from helicity).
The weak hypercharge for an anti-fermion is the opposite of that of the corresponding fermion because the electric charge and the third component of the weak isospin reverse sign under charge conjugation.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (82)

Related concepts (16)

Related courses (8)

Related people (30)

Related units (14)

Related lectures (34)

Flavour (particle physics)

In particle physics, flavour or flavor refers to the species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations. In classical mechanics, a force acting on a point-like particle can only alter the particle's dynamical state, i.e.

Higgs boson

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.

Weak isospin

In particle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the _W boson+- bosons; particles with zero weak isospin do not. Weak isospin is a construct parallel to the idea of isospin under the strong interaction. Weak isospin is usually given the symbol T or I, with the third component written as T_3 or I_3. It can be understood as the eigenvalue of a charge operator.

PHYS-416: Particle physics II

Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the

PHYS-471: Particle physics: the flavour frontiers

This course will present experimental aspects of flavour physics primarily in the quark sector but also in the lepton sector and their role in the development of the Standard Model of particle physics

PHYS-415: Particle physics I

Presentation of particle properties, their symmetries and interactions.
Introduction to quantum electrodynamics and to the Feynman rules.

Provides an in-depth analysis of the Standard Model, covering topics such as the Higgs mechanism, gauge boson interactions, and the role of chirality in particle physics.

Introduces quarks and leptons, discussing their spin, charge, and notation.

Explores vacuum energy during inflation and the dynamics of scalar and vector fields, emphasizing the importance of seeking clarification and providing details about upcoming exams.

Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer

A measurement of the top quark pole mass m(t)(pole) in events where a top quarkantiquark pair (t (t) over bar) is produced in association with at least one additional jet ( t (t) over bar +jet) is presented. This analysis is performed using proton-proton c ...

We study the evolution of magnetic fields coupled with chiral fermion asymmetry in the framework of chiral magnetohydrodynamics with zero initial total chirality. The initial magnetic field has a turbulent spectrum peaking at a certain characteristic scale ...

Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer

A search is performed for exclusive high-mass gamma gamma -> WW and gamma gamma -> ZZ production in proton-proton collisions using intact forward protons reconstructed in near-beam detectors, with both weak bosons decaying into boosted and merged jets. The ...