Summary
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry (time reversal). These discrete symmetries, C, P and T, are symmetries of the equations that describe the known fundamental forces of nature: electromagnetism, gravity, the strong and the weak interactions. Verifying whether some given mathematical equation correctly models nature requires giving physical interpretation not only to continuous symmetries, such as motion in time, but also to its discrete symmetries, and then determining whether nature adheres to these symmetries. Unlike the continuous symmetries, the interpretation of the discrete symmetries is a bit more intellectually demanding and confusing. An early surprise appeared in the 1950s, when Chien Shiung Wu demonstrated that the weak interaction violated P-symmetry. For several decades, it appeared that the combined symmetry CP was preserved, until CP-violating interactions were discovered. Both discoveries lead to Nobel prizes. The C-symmetry is particularly troublesome, physically, as the universe is primarily filled with matter, not anti-matter, whereas the naive C-symmetry of the physical laws suggests that there should be equal amounts of both. It is currently believed that CP-violation during the early universe can account for the "excess" matter, although the debate is not settled. Earlier textbooks on cosmology, predating the 1970s, routinely suggested that perhaps distant galaxies were made entirely of anti-matter, thus maintaining a net balance of zero in the universe. This article focuses on exposing and articulating the C-symmetry of various important equations and theoretical systems, including the Dirac equation and the structure of quantum field theory.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)

Numerical investigations of 3D CFTs using conformal bootstrap methods

Marten Jan Reehorst

Conformal field theories (CFTs) play a very significant role in modern physics, appearing in such diverse fields as particle physics, condensed matter and statistical physics and in quantum gravity bo
EPFL2020

Complexes luminescents de lanthanides avec des dérivés du cyclène comme briques pour l'ingénierie de sondes analytiques biomédicales

This work deals with the engineering of a new luminescent complex of lanthanide, able to be specifically grafted onto biological materials and to emit a characteristic light useful in quantifying the
EPFL2004
Related concepts (63)
Higgs boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.
CP violation
In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry (parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry). The discovery of CP violation in 1964 in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980 for its discoverers James Cronin and Val Fitch.
C-symmetry
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry (time reversal).
Show more
Related courses (10)
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-416: Particle physics II
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Show more