Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
As distribution shifts are inescapable in realistic clinical scenarios due to inconsistencies in imaging protocols, scanner vendors, and across different centers, well-trained deep models incur a domain generalization problem in unseen environments. Despit ...
Owing in large part to the advent of integrated biphoton frequency combs, recent years have witnessed increased attention to quantum information processing in the frequency domain for its inherent high dimensionality and entanglement compatible with fiber- ...
We study generalization properties of random features (RF) regression in high dimensions optimized by stochastic gradient descent (SGD) in under-/overparameterized regime. In this work, we derive precise non-asymptotic error bounds of RF regression under b ...
2022
The conjugate heat transfer in mixtures of a fluid and single granular clusters is studied in this paper using a novel lattice Boltzmann method (LBM) programmed for parallel computation on the graphics processing unit (GPU). The LBM is validated for heat c ...
PERGAMON-ELSEVIER SCIENCE LTD2022
Post-quantum cryptography is a branch of cryptography which deals with cryptographic algorithms whose hardness assumptions are not based on problems known to be solvable by a quantum computer, such as the RSA problem, factoring or discrete logarithms.This ...
We consider the problem of inferring a matching hidden in a weighted random k-hypergraph. We assume that the hyperedges' weights are random and distributed according to two different densities conditioning on the fact that they belong to the hidden matchin ...
The discretization of robust quadratic optimal control problems under uncertainty using the finite element method and the stochastic collocation method leads to large saddle-point systems, which are fully coupled across the random realizations. Despite its ...
In superstructure optimization of processes and energy systems, the design space is defined as the combination of unit considerations, process conditions and model parameters that might be subjected to uncertainty. Most of the time, decision makers are not ...
The quantification of uncertainties can be particularly challenging for problems requiring long-time integration as the structure of the random solution might considerably change over time. In this respect, dynamical low-rank approximation (DLRA) is very a ...
We propose nonparametric estimators for the second-order central moments of possibly anisotropic spherical random fields, within a functional data analysis context. We consider a measurement framework where each random field among an identically distribute ...