**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Dynamical low rank approximation for uncertainty quantification of time-dependent problems

Abstract

The quantification of uncertainties can be particularly challenging for problems requiring long-time integration as the structure of the random solution might considerably change over time. In this respect, dynamical low-rank approximation (DLRA) is very appealing. It can be seen as a reduced basis method, thus solvable at a relatively low computational cost, in which the solution is expanded as a linear combination of a few deterministic functions with random coefficients. The distinctive feature of the DLRA is that both the deterministic functions and random coefficients are computed on the fly and are free to evolve in time, thus adjusting at each time to the current structure of the random solution. This is achieved by suitably projecting the dynamics onto the tangent space of a manifold consisting of all random functions with a fixed rank. In this thesis, we aim at further analysing and applying the DLR methods to time-dependent problems.Our first work considers the DLRA of random parabolic equations and proposes a class of fully discrete numerical schemes.Similarly to the continuous DLRA, our schemes are shown to satisfy a discrete variational formulation.By exploiting this property, we establish the stability of our schemes: we show that our explicit and semi-implicit versions are conditionally stable under a ``parabolic'' type CFL condition which does not depend on the smallest singular value of the DLR solution; whereas our implicit scheme is unconditionally stable. Moreover, we show that, in certain cases, the semi-implicit scheme can be unconditionally stable if the randomness in the system is sufficiently small. The analysis is supported by numerical results showing the sharpness of the obtained stability conditions. The discrete variational formulation is further applied in our second work, which derives a-priori and a-posteriori error estimates for the discrete DLRA of a random parabolic equation obtained by the three newly-proposed schemes. Under the assumption that the right-hand side of the dynamical system lies in the tangent space up to a small remainder, we show that the solution converges with standard convergence rates w.r.t. the time, spatial, and stochastic discretization parameters, with constants independent of singular values.We follow by presenting a residual-based a-posteriori error estimation for a heat equation with a random forcing term and a random diffusion coefficient which is assumed to depend affinely on a finite number of independent random variables. The a-posteriori error estimate consists of four parts: the finite element method error, the time discretization error, the stochastic collocation error, and the rank truncation error. These estimators are then used to drive an adaptive choice of FE mesh, collocation points, time steps, and time-varying rank.The last part of the thesis examines the idea of applying the DLR method in data assimilation problems, in particular the filtering problem. We propose two new filtering algorithms. They both rely on complementing the DLRA with a Gaussian component. More precisely, the DLR portion captures the non-Gaussian features in an evolving low-dimensional subspace through interacting particles, whereas each particle carries a Gaussian distribution on the whole ambient space. We study the effectiveness of these algorithms on a filtering problem for the Lorenz-96 system.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (47)

System

A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its

Time

Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component

Uncertainty quantification

Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely cert

Related publications (104)

Loading

Loading

Loading

In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high-fidelity approximations of PDEs often result in a large number of degrees of freedom, the need for iterative evaluations for numerical optimizations and rapid feedback is computationally challenging.The first part of this thesis is devoted to conserving the high-dimensional equation's invariants, symmetries, and structures during the reduction process. Traditional reduction techniques are not guaranteed to yield stable reduced systems, even if the target problem is stable. In the context of fluid flows, the skew-symmetric structure of the problem entails the preservation of the kinetic energy of the system. By preserving the same structure at the level of the reduced model, we obtain enhanced stability, and accuracy and the reduced model acquires physical significance by preserving a surrogate of the energy of the original problem. Next, we focus on Hamiltonian systems, which, being driven by symmetry, are a source of great interest in the reduction community. It is well known that the breaking of these symmetries in the reduced model is accompanied by a blowup of the system energy and flow volume. In this thesis, geometric reduced models for Hamiltonian systems are further developed and combined with the dynamically orthogonal methods, addressing the poor reducibility in time of advection-dominated problems. The reduced solution is expressed as a linear combination of a finite number of modes and coincides with the symplectic projection of the high-fidelity Hamiltonian problem onto the tangent space of the approximating manifold. An error surrogate is used to monitor the approximation ability of the reduced model and make a change in the rank of the approximating system if necessary. The method is further developed through a combination of DEIM and DMD to reduce non-polynomial nonlinearities while preserving the symplectic structure of the problem and applied to the Vlasov-Poisson system.In the second part of the thesis, we consider several data-driven methods to address the poor accuracy in the under-resolved regime for Galerkin reduced models via a closure term. The closure term is developed systematically from the Mori-Zwanzig formalism by introducing projection operators on the spaces of resolved and unresolved scales, thus resulting in an additional memory integral term. The interaction between different scales turns out to be nonlocal in time and dominated by a high-dimensional orthogonal dynamics equation, which cannot be solved precisely and efficiently. Several classical methods in the field of statistical mechanics are used to approximate the memory term, exploiting the finiteness of the memory kernel support. We conclude this thesis by showing through numerical experiments how long short-term memory networks, i.e., machine learning structures characterized by feedback connections, represent a valid tool for approximating the additional memory term.

This thesis is devoted to the derivation of error estimates for partial differential equations with random input data, with a focus on a posteriori error estimates which are the basis for adaptive strategies. Such procedures aim at obtaining an approximation of the solution with a given precision while minimizing the computational costs. If several sources of error come into play, it is then necessary to balance them to avoid unnecessary work. We are first interested in problems that contain small uncertainties approximated by finite elements. The use of perturbation techniques is appropriate in this setting since only few terms in the power series expansion of the exact random solution with respect to a parameter characterizing the amount of randomness in the problem are required to obtain an accurate approximation. The goal is then to perform an error analysis for the finite element approximation of the expansion up to a certain order. First, an elliptic model problem with random diffusion coefficient with affine dependence on a vector of independent random variables is studied. We give both a priori and a posteriori error estimates for the first term in the expansion for various norms of the error. The results are then extended to higher order approximations and to other sources of uncertainty, such as boundary conditions or forcing term. Next, the analysis of nonlinear problems in random domains is proposed, considering the one-dimensional viscous Burgers' equation and the more involved incompressible steady-state Navier-Stokes equations. The domain mapping method is used to transform the equations in random domains into equations in a fixed reference domain with random coefficients. We give conditions on the mapping and the input data under which we can prove the well-posedness of the problems and give a posteriori error estimates for the finite element approximation of the first term in the expansion. Finally, we consider the heat equation with random Robin boundary conditions. For this parabolic problem, the time discretization brings an additional source of error that is accounted for in the error analysis. The second part of this work consists in the analysis of a random elliptic diffusion problem that is approximated in the physical space by the finite element method and in the stochastic space by the stochastic collocation method on a sparse grid. Considering a random diffusion coefficient with affine dependence on a vector of independent random variables, we derive a residual-based a posteriori error estimate that controls the two sources of error. The stochastic error estimator is then used to drive an adaptive sparse grid algorithm which aims at alleviating the so-called curse of dimensionality inherent to tensor grids. Several numerical examples are given to illustrate the performance of the adaptive procedure.

In this work we present a residual based a posteriori error estimation for a heat equation with a random forcing term and a random diffusion coefficient which is assumed to depend affinely on a finite number of independent random variables. The problem is discretized by a stochastic collocation finite element method and advanced in time by the θ-scheme. The a posteriori error estimate consists of three parts controlling the finite element error, the time discretization error and the stochastic collocation error, respectively. These estimators are then used to drive an adaptive choice of FE mesh, collocation points and time steps. We study the effectiveness of the estimate and the performance of the adaptive algorithm on a numerical example.