Quantum harmonic oscillatorThe quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.
Displacement operatorIn the quantum mechanics study of optical phase space, the displacement operator for one mode is the shift operator in quantum optics, where is the amount of displacement in optical phase space, is the complex conjugate of that displacement, and and are the lowering and raising operators, respectively. The name of this operator is derived from its ability to displace a localized state in phase space by a magnitude . It may also act on the vacuum state by displacing it into a coherent state.
D-braneIn string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the D. A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory.
Time translation symmetryTime translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time translation symmetry is closely connected, via the Noether theorem, to conservation of energy.
De Broglie–Bohm theoryThe de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. In addition to the wavefunction, it also postulates an actual configuration of particles exists even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation.
Universal wavefunctionThe universal wavefunction (or wave function), introduced by Hugh Everett in his 1973 PhD thesis The Theory of the Universal Wave Function, informs a core concept in the relative state interpretation or many-worlds interpretation of quantum mechanics. It later received investigation from James Hartle and Stephen Hawking in which they derived a specific solution to the Wheeler–deWitt equation to explain the initial conditions of the Big Bang cosmology.
Solovay–Kitaev theoremIn quantum information and computation, the Solovay–Kitaev theorem says, roughly, that if a set of single-qubit quantum gates generates a dense subset of SU(2), then that set can be used to approximate any desired quantum gate with a relatively short sequence of gates. This theorem is considered one of the most significant results in the field of quantum computation and was first announced by Robert M. Solovay in 1995 and independently proven by Alexei Kitaev in 1997. Michael Nielsen and Christopher M.
Bell's theoremBell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light.
DilatonIn particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.
Action at a distanceIn physics, action at a distance is the concept that an object can be affected without being physically touched (as in mechanical contact) by another object. That is, it is the non-local interaction of objects that are separated in space. Non-contact forces is action at a distance affecting specifically an object's motion. This term was used most often in the context of early theories of gravity and electromagnetism to describe how an object responds to the influence of distant objects.