Dirichlet L-functionIn mathematics, a Dirichlet L-series is a function of the form where is a Dirichlet character and s a complex variable with real part greater than 1. It is a special case of a Dirichlet series. By analytic continuation, it can be extended to a meromorphic function on the whole complex plane, and is then called a Dirichlet L-function and also denoted L(s, χ). These functions are named after Peter Gustav Lejeune Dirichlet who introduced them in to prove the theorem on primes in arithmetic progressions that also bears his name.
Petersson inner productIn mathematics the Petersson inner product is an inner product defined on the space of entire modular forms. It was introduced by the German mathematician Hans Petersson. Let be the space of entire modular forms of weight and the space of cusp forms. The mapping , is called Petersson inner product, where is a fundamental region of the modular group and for is the hyperbolic volume form. The integral is absolutely convergent and the Petersson inner product is a positive definite Hermitian form.
Pure mathematicsPure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, but pure mathematicians are not primarily motivated by such applications. Instead, the appeal is attributed to the intellectual challenge and aesthetic beauty of working out the logical consequences of basic principles.
Perron's formulaIn mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetic function, by means of an inverse Mellin transform. Let be an arithmetic function, and let be the corresponding Dirichlet series. Presume the Dirichlet series to be uniformly convergent for . Then Perron's formula is Here, the prime on the summation indicates that the last term of the sum must be multiplied by 1/2 when x is an integer.
Formula for primesIn number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. No such formula which is efficiently computable is known. A number of constraints are known, showing what such a "formula" can and cannot be. A simple formula is for positive integer , where is the floor function, which rounds down to the nearest integer. By Wilson's theorem, is prime if and only if . Thus, when is prime, the first factor in the product becomes one, and the formula produces the prime number .
Integer sequenceIn mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula n2 − 1 for the nth term: an explicit definition.
Complex multiplicationIn mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice. It has an aspect belonging to the theory of special functions, because such elliptic functions, or abelian functions of several complex variables, are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points.
Pollard's rho algorithmPollard's rho algorithm is an algorithm for integer factorization. It was invented by John Pollard in 1975. It uses only a small amount of space, and its expected running time is proportional to the square root of the smallest prime factor of the composite number being factorized. The algorithm is used to factorize a number , where is a non-trivial factor. A polynomial modulo , called (e.g., ), is used to generate a pseudorandom sequence. It is important to note that must be a polynomial.
Special number field sieveIn number theory, a branch of mathematics, the special number field sieve (SNFS) is a special-purpose integer factorization algorithm. The general number field sieve (GNFS) was derived from it. The special number field sieve is efficient for integers of the form re ± s, where r and s are small (for instance Mersenne numbers). Heuristically, its complexity for factoring an integer is of the form: in O and L-notations.
Erdős–Kac theoremIn number theory, the Erdős–Kac theorem, named after Paul Erdős and Mark Kac, and also known as the fundamental theorem of probabilistic number theory, states that if ω(n) is the number of distinct prime factors of n, then, loosely speaking, the probability distribution of is the standard normal distribution. ( is sequence A001221 in the OEIS.) This is an extension of the Hardy–Ramanujan theorem, which states that the normal order of ω(n) is log log n with a typical error of size .