Related concepts (30)
Center (ring theory)
In algebra, the center of a ring R is the subring consisting of the elements x such that xy = yx for all elements y in R. It is a commutative ring and is denoted as ; "Z" stands for the German word Zentrum, meaning "center". If R is a ring, then R is an associative algebra over its center. Conversely, if R is an associative algebra over a commutative subring S, then S is a subring of the center of R, and if S happens to be the center of R, then the algebra R is called a central algebra.
Matrix ring
In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Group ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.
Injective module
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is to that of projective modules.
Composition series
In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many naturally occurring modules are not semisimple, hence cannot be decomposed into a direct sum of simple modules. A composition series of a module M is a finite increasing filtration of M by submodules such that the successive quotients are simple and serves as a replacement of the direct sum decomposition of M into its simple constituents.
Weyl algebra
In abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients (in one variable), namely expressions of the form More precisely, let F be the underlying field, and let F[X] be the ring of polynomials in one variable, X, with coefficients in F. Then each fi lies in F[X]. ∂X is the derivative with respect to X. The algebra is generated by X and ∂X. The Weyl algebra is an example of a simple ring that is not a matrix ring over a division ring.
Artinian module
In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it is an Artinian module over itself (with left or right multiplication). Both concepts are named for Emil Artin. In the presence of the axiom of (dependent) choice, the descending chain condition becomes equivalent to the minimum condition, and so that may be used in the definition instead.
Jacobson radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring is the ideal consisting of those elements in that annihilate all simple right -modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by or ; the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring.
Simple ring
In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. It is then called a simple algebra over this field. Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple).
Projective module
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below. Every free module is a projective module, but the converse fails to hold over some rings, such as Dedekind rings that are not principal ideal domains.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.