In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.
The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. It is then called a simple algebra over this field.
Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple). Under such terminology a non-zero ring with no non-trivial two-sided ideals is called quasi-simple.
Rings which are simple as rings but are not a simple module over themselves do exist: a full matrix ring over a field does not have any nontrivial two-sided ideals (since any ideal of is of the form with an ideal of ), but it has nontrivial left ideals (for example, the sets of matrices which have some fixed zero columns).
An immediate example of a simple ring is a division ring, where every nonzero element has a multiplicative inverse, for instance, the quaternions. Also, for any , the algebra of matrices with entries in a division ring is simple.
Joseph Wedderburn proved that if a ring is a finite-dimensional simple algebra over a field , it is isomorphic to a matrix algebra over some division algebra over . In particular, the only simple rings that are finite-dimensional algebras over the real numbers are rings of matrices over either the real numbers, the complex numbers, or the quaternions.
Wedderburn proved these results in 1907 in his doctoral thesis, On hypercomplex numbers, which appeared in the Proceedings of the London Mathematical Society. His thesis classified finite-dimensional simple and also semisimple algebras over fields. Simple algebras are building blocks of semisimple algebras: any finite-dimensional semisimple algebra is a Cartesian product, in the sense of algebras, of finite-dimensional simple algebras.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Group representation theory studies the actions of groups on vector spaces. This allows the use of linear algebra to study certain group theoretical questions. In this course the groups in question wi
In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K. (Note that not every simple algebra is a central simple algebra over its center: for instance, if K is a field of characteristic 0, then the Weyl algebra is a simple algebra with center K, but is not a central simple algebra over K as it has infinite dimension as a K-module.
In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields.
Let G be either a simple linear algebraic group over an algebraically closed field of characteristic l>0 or a quantum group at an l-th root of unity. The category Rep(G) of finite-dimensional G-modules is non-semisimple. In this thesis, we develop new tech ...
In this work, we use finite elements simulations to study the far field properties of two plasmonic structures, namely a dipole antenna and a cylinder dimer, connected to a pair of nanorods. We show that electrical, rather than near field, coupling between ...
We study the spectra of non-regular semisimple elements in irreducible representations of simple algebraic groups. More precisely, we prove that if G is a simply connected simple linear algebraic group and φ : G → GL(V ) is a non-trivial irreducible repres ...