En analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe. Les conditions peuvent porter sur la structure de l’ensemble de définition ou sur les propriétés locales ou globales de la fonction. Par exemple, la fonction cosinus définie de l'intervalle [–1, 1] (boule unité fermée de l'espace euclidien à une dimension) sur lui-même, est continue : elle doit donc y posséder un point fixe (qui vaut approximativement x = 0,74 et correspond à la solution de l'équation x = cos(x)). Ces théorèmes se révèlent être des outils très utiles en mathématiques, principalement dans le domaine de la résolution des équations différentielles. Le théorème du point fixe de Banach donne un critère général dans les espaces métriques complets pour assurer que le procédé d'itération d'une fonction tende vers un point fixe. Très différent, le théorème du point fixe de Brouwer n'est pas constructif : il garantit l'existence d'un point fixe d'une fonction continue définie de la boule unité fermée euclidienne sur elle-même sans apporter de méthode générale pour le trouver, à moins d’utiliser le lemme de Sperner. Théorème du point fixe de Banach, également attribué au mathématicien français Émile Picard Théorème du point fixe de Browder Théorème du point fixe de Caristi Théorème de Poincaré-Birkhoff Théorème du point fixe de Ryll-Nardzewski Théorème du point fixe de Bourbaki-Kneser Théorème du point fixe de Kleene Théorème de Knaster-Tarski Théorème du point fixe de Brouwer, qui généralise en dimension quelconque la propriété d’existence d’un point fixe pour une fonction continue d’un segment dans lui-même, propriété découlant

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
FIN-607: Empirical Asset Pricing
This class is designed to give you an understanding of the basics of empirical asset pricing. This means that we will learn how to test asset pricing models and apply them mostly to stock markets. We
MATH-416: Abstract analysis on groups
We study analytic phenomena on groups, notably paradoxical decompositions, fixed point properties and harmonic functions.
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
Afficher plus
Séances de cours associées (200)
Physique Mini-Test: Analyse de Trajectoire
Explore l'analyse de la trajectoire d'une balle en contact avec un faisceau, en se concentrant sur les forces, les angles et les équations de mouvement.
Rapprochement Landau: modèle d'émission
Explore l'approximation Landau appliquée au modèle Ising en physique statistique.
Systèmes dynamiques : cartes et stabilité
Explore les cartes unidimensionnelles, les solutions périodiques et les bifurcations dans les systèmes dynamiques.
Afficher plus
Publications associées (181)

Bootstrapping traceless symmetric O(N) scalars

Alessandro Vichi, Maria Refinetti, Marten Jan Reehorst

We use numerical bootstrap techniques to study correlation functions of traceless sym-metric tensors of O(N) with two indices ti j. We obtain upper bounds on operator dimen-sions for all the relevant representations and several values of N. We discover sev ...
SCIPOST FOUNDATION2023

Floyd's manifold is a conjugation space

Jérôme Scherer

E. E. Floyd showed in 1973 that there exist only two nontrivial cobor-dism classes that contain manifolds with three cells, and that they lie in dimen-sions 10 and 5. We prove that there is an action of the cyclic group C2 on the 10-dimensional Floyd manif ...
Pisa2023

Modality-invariant Visual Odometry for Embodied Vision

Amir Roshan Zamir, Roman Christian Bachmann, Marius Reinhard Memmel

Effectively localizing an agent in a realistic, noisy setting is crucial for many embodied vision tasks. Visual Odometry (VO) is a practical substitute for unreliable GPS and compass sensors, especially in indoor environments. While SLAM-based methods show ...
Los Alamitos2023
Afficher plus
Concepts associés (10)
Fonction itérée
En mathématiques, une fonction itérée est une fonction obtenue par composition répétée d’une autre fonction avec elle-même un certain nombre de fois. La procédure consistant à appliquer la même fonction à plusieurs reprises s’appelle itération. Les fonctions itérées apparaissent en informatique, dans les systèmes dynamiques, les groupes de renormalisation et sont à la base des fractales. L’itérée, plus précisément la deuxième itérée, d’une fonction f , définie sur un ensemble X et à valeurs dans ce même ensemble X, est la fonction où note la composition de fonctions.
Théorème du point fixe de Brouwer
En mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
Fixed-point theorems in infinite-dimensional spaces
In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first result in the field was the Schauder fixed-point theorem, proved in 1930 by Juliusz Schauder (a previous result in a different vein, the Banach fixed-point theorem for contraction mappings in complete metric spaces was proved in 1922). Quite a number of further results followed.
Afficher plus
MOOCs associés (8)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.