**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Floyd's manifold is a conjugation space

Abstract

E. E. Floyd showed in 1973 that there exist only two nontrivial cobor-dism classes that contain manifolds with three cells, and that they lie in dimen-sions 10 and 5. We prove that there is an action of the cyclic group C2 on the 10-dimensional Floyd manifold which turns it into a conjugation manifold in the sense of Hausmann, Holm, and Puppe. The submanifold of fixed points is the 5-dimensional Floyd manifold, whose cohomology is isomorphic to that of the large one, scaled down by dividing the cohomological degree by a factor two.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (47)

Related concepts (18)

Related MOOCs (2)

Ontological neighbourhood

Manifold

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.

Differentiable manifold

In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.

Fixed point (mathematics)

hatnote|1=Fixed points in mathematics are not to be confused with other uses of "fixed point", or stationary points where math|1=f(x) = 0. In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically for functions, a fixed point is an element that is mapped to itself by the function. Formally, c is a fixed point of a function f if c belongs to both the domain and the codomain of f, and f(c) = c.

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Daniel Kressner, Axel Elie Joseph Séguin, Gianluca Ceruti

In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...

The goal of this thesis is the development and the analysis of numerical methods for problems where the unknown is a curve on a smooth manifold. In particular, the thesis is structured around the three following problems: homotopy continuation, curve inter ...

Vincenzo Savona, Fabrizio Minganti, Luca Gravina

Encoding quantum information onto bosonic systems is a promising route to quantum error correc-tion. In a cat code, this encoding relies on the confinement of the dynamics of the system onto the two-dimensional manifold spanned by Schrodinger cats of oppos ...