Principal ideal domainIn mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.
Gaussian integerIn number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or Gaussian integers share many properties with integers: they form a Euclidean domain, and have thus a Euclidean division and a Euclidean algorithm; this implies unique factorization and many related properties. However, Gaussian integers do not have a total ordering that respects arithmetic.
Fundamental theorem of arithmeticIn mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. For example, The theorem says two things about this example: first, that 1200 be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.
IntegerAn integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface Z or blackboard bold . The set of natural numbers is a subset of , which in turn is a subset of the set of all rational numbers , itself a subset of the real numbers . Like the natural numbers, is countably infinite.
Quadratic integerIn number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form x2 + bx + c = 0 with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers. Common examples of quadratic integers are the square roots of rational integers, such as , and the complex number i = , which generates the Gaussian integers.
Algebraic number fieldIn mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Polynomial ringIn mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers.
Unique factorization domainIn mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of prime elements (or irreducible elements), uniquely up to order and units.
Bézout's identityIn mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout, is the following theorem: Here the greatest common divisor of 0 and 0 is taken to be 0. The integers x and y are called Bézout coefficients for (a, b); they are not unique. A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that and equality occurs only if one of a and b is a multiple of the other.
Euclidean algorithmIn mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (300 BC). It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use.