Concept

Unique factorization domain

Summary
In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of prime elements (or irreducible elements), uniquely up to order and units. Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field. Unique factorization domains appear in the following chain of class inclusions: Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R can be written as a product (an empty product if x is a unit) of irreducible elements pi of R and a unit u: x = u p1 p2 ⋅⋅⋅ pn with n ≥ 0 and this representation is unique in the following sense: If q1, ..., qm are irreducible elements of R and w is a unit such that x = w q1 q2 ⋅⋅⋅ qm with m ≥ 0, then m = n, and there exists a bijective map φ : {1, ..., n} → {1, ..., m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}. The uniqueness part is usually hard to verify, which is why the following equivalent definition is useful: A unique factorization domain is an integral domain R in which every non-zero element can be written as a product of a unit and prime elements of R. Most rings familiar from elementary mathematics are UFDs: All principal ideal domains, hence all Euclidean domains, are UFDs. In particular, the integers (also see fundamental theorem of arithmetic), the Gaussian integers and the Eisenstein integers are UFDs. If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By induction, a polynomial ring in any number of variables over any UFD (and in particular over a field or over the integers) is a UFD.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (13)
MATH-310: Algebra
This is an introduction to modern algebra: groups, rings and fields.
MATH-311: Algebra IV - rings and modules
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
Show more
Related lectures (52)
Irreducible Factors and Noetherian Rings
Explores irreducible factors, Noetherian rings, ideal stability, and unique factorization in rings.
Integers: Well Ordering and Induction
Explores well ordering, induction, Euclidean division, and prime factorization in integers.
Green's Theorem in 2D: Applications
Explores the applications of Green's Theorem in 2D, emphasizing the importance of regular domains for successful integration.
Show more
Related publications (33)

Overview of fast particle experiments in the first MAST Upgrade experimental campaigns

Matteo Vallar

MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfv & eacute;nic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in ...
Iop Publishing Ltd2024

Energy Efficient Logic and Memory Design With Beyond-CMOS Magnetoelectric Spin-Orbit (MESO) Technology Toward Ultralow Supply Voltage

Kyojin Choo

Devices based on the spin as the fundamental computing unit provide a promising beyond-complementary metal-oxide-semiconductor (CMOS) device option, thanks to their energy efficiency and compatibility with CMOS. One such option is a magnetoelectric spin-or ...
Piscataway2023

Metallicity Distribution Functions of 13 Ultra-faint Dwarf Galaxy Candidates from Hubble Space Telescope Narrowband Imaging

Nicolas Lawrence Etienne Longeard

We present uniformly measured stellar metallicities of 463 stars in 13 Milky Way (MW) ultra-faint dwarf galaxies (UFDs; M-V = -7.1 to -0.8) using narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope. This represents the largest homogeneous ...
Bristol2023
Show more
Related people (1)
Related concepts (34)
Divisor
In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . In this case, one also says that is a multiple of An integer is divisible or evenly divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder. An integer n is divisible by a nonzero integer m if there exists an integer k such that . This is written as Other ways of saying the same thing are that m divides n, m is a divisor of n, m is a factor of n, and n is a multiple of m.
Commutative ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. A ring is a set equipped with two binary operations, i.e. operations combining any two elements of the ring to a third.
Euclidean domain
In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements.
Show more