Summary
Two-phase electrical power was an early 20th-century polyphase alternating current electric power distribution system. Two circuits were used, with voltage phases differing by one-quarter of a cycle, 90°. Usually circuits used four wires, two for each phase. Less frequently, three wires were used, with a common wire with a larger-diameter conductor. Some early two-phase generators had two complete rotor and field assemblies, with windings physically offset to provide two-phase power. The generators at Niagara Falls installed in 1895 were the largest generators in the world at that time, and were two-phase machines. Three-phase systems eventually replaced the original two-phase power systems for power transmission and utilization. Active two-phase distribution systems remain in Center City Philadelphia, where many commercial buildings are permanently wired for two-phase, and in Hartford, Connecticut. The advantage of two-phase electrical power over single-phase was that it allowed for simple, self-starting electric motors. In the early days of electrical engineering, it was easier to analyze and design two-phase systems where the phases were completely separated. It was not until the invention of the method of symmetrical components in 1918 that polyphase power systems had a convenient mathematical tool for describing unbalanced load cases. The revolving magnetic field produced with a two-phase system allowed electric motors to provide torque from zero motor speed, which was not possible with a single-phase induction motor (without an additional starting means). Induction motors designed for two-phase operation use a similar winding configuration as capacitor start single-phase motors. However, in a two-phase induction motor, the impedances of the two windings are identical. Two-phase circuits also have the advantage of constant combined power into an ideal load, whereas power in a single-phase circuit pulsates at twice the line frequency due to the zero crossings of voltage and current.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.