Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine). Conflicting criteria are typical in evaluating options: cost or price is usually one of the main criteria, and some measure of quality is typically another criterion, easily in conflict with the cost. In purchasing a car, cost, comfort, safety, and fuel economy may be some of the main criteria we consider – it is unusual that the cheapest car is the most comfortable and the safest one. In portfolio management, managers are interested in getting high returns while simultaneously reducing risks; however, the stocks that have the potential of bringing high returns typically carry high risk of losing money. In a service industry, customer satisfaction and the cost of providing service are fundamental conflicting criteria. In their daily lives, people usually weigh multiple criteria implicitly and may be comfortable with the consequences of such decisions that are made based on only intuition. On the other hand, when stakes are high, it is important to properly structure the problem and explicitly evaluate multiple criteria. In making the decision of whether to build a nuclear power plant or not, and where to build it, there are not only very complex issues involving multiple criteria, but there are also multiple parties who are deeply affected by the consequences. Structuring complex problems well and considering multiple criteria explicitly leads to more informed and better decisions. There have been important advances in this field since the start of the modern multiple-criteria decision-making discipline in the early 1960s. A variety of approaches and methods, many implemented by specialized decision-making software, have been developed for their application in an array of disciplines, ranging from politics and business to the environment and energy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
CIVIL-557: Decision-aid methodologies in transportation
The course has two modules, the first Operations Research (OR), and the second is statistical modeling of transportation systems. Students will be modeling applied problems and developing solution met
ENV-471: Environmental economics
Introduction to economic analysis applied to environmental issues: all the necessary basic concepts, including cost-benefit analysis, for environmental policy making and its instruments (examples: cli
CIVIL-466: Water resources engineering and management
The course focuses on designing and managing water systems to ensure sustainable use for both human and environmental needs. Engineering aspects:water quantity, quality, timing, distribution. Manageme
Show more
Related lectures (55)
Support Vector Machines: Soft Margin SVM
Introduces Soft Margin SVM, aiming to balance errors and margin width.
Project Management and Risk Analysis
Explores project management, risk analysis, and multicriteria analysis for decision-making in project selection.
Supervised Learning: Formalization and Cost Functions
Covers the formalism for supervised learning and decision functions in classification problems.
Show more
Related concepts (7)
Decision-making software
Decision-making software (DM software) is software for computer applications that help individuals and organisations make choices and take decisions, typically by ranking, prioritizing or choosing from a number of options. An early example of DM software was described in 1973. Before the advent of the World Wide Web, most DM software was spreadsheet-based, with the first web-based DM software appearing in the mid-1990s. Nowadays, many DM software products (mostly web-based) are available – e.g.
Decision analysis
Decision analysis (DA) is the discipline comprising the philosophy, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing important aspects of a decision; for prescribing a recommended course of action by applying the maximum expected-utility axiom to a well-formed representation of the decision; and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker, and other corporate and non-corporate stakeholders.
Analytic hierarchy process
In the theory of decision making, the analytic hierarchy process (AHP), also analytical hierarchy process, is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. It was developed by Thomas L. Saaty in the 1970s; Saaty partnered with Ernest Forman to develop Expert Choice software in 1983, and AHP has been extensively studied and refined since then. It represents an accurate approach to quantifying the weights of decision criteria.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.