Algebraically closed fieldIn mathematics, a field F is algebraically closed if every non-constant polynomial in F[x] (the univariate polynomial ring with coefficients in F) has a root in F. As an example, the field of real numbers is not algebraically closed, because the polynomial equation has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed.
Ordered fieldIn mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered field is isomorphic to the reals. Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Squares are necessarily non-negative in an ordered field.
Local fieldIn mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below.
Puiseux seriesIn mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series is a Puiseux series in the indeterminate x. Puiseux series were first introduced by Isaac Newton in 1676 and rediscovered by Victor Puiseux in 1850. The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator n, a Puiseux series becomes a Laurent series in an nth root of the indeterminate.
Primitive element theoremIn field theory, the primitive element theorem is a result characterizing the finite degree field extensions that can be generated by a single element. Such a generating element is called a primitive element of the field extension, and the extension is called a simple extension in this case. The theorem states that a finite extension is simple if and only if there are only finitely many intermediate fields. An older result, also often called "primitive element theorem", states that every finite separable extension is simple; it can be seen as a consequence of the former theorem.
Perfect fieldIn algebra, a field k is perfect if any one of the following equivalent conditions holds: Every irreducible polynomial over k has distinct roots. Every irreducible polynomial over k is separable. Every finite extension of k is separable. Every algebraic extension of k is separable. Either k has characteristic 0, or, when k has characteristic p > 0, every element of k is a pth power. Either k has characteristic 0, or, when k has characteristic p > 0, the Frobenius endomorphism x ↦ x^p is an automorphism of k.
Glossary of field theoryField theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.) A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division. The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×; The ring of polynomials in the variable x with coefficients in F is denoted by F[x].
Simple extensionIn field theory, a simple extension is a field extension which is generated by the adjunction of a single element, called a primitive element. Simple extensions are well understood and can be completely classified. The primitive element theorem provides a characterization of the finite simple extensions. A field extension L/K is called a simple extension if there exists an element θ in L with This means that every element of L can be expressed as a rational fraction in θ, with coefficients in K; that is, it is produced from θ and elements of K by the field operations +, −, •, / .