Concept

Median (geometry)

Summary
In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Every triangle has exactly three medians, one from each vertex, and they all intersect each other at the triangle's centroid. In the case of isosceles and equilateral triangles, a median bisects any angle at a vertex whose two adjacent sides are equal in length. The concept of a median extends to tetrahedra. Each median of a triangle passes through the triangle's centroid, which is the center of mass of an infinitely thin object of uniform density coinciding with the triangle. Thus the object would balance on the intersection point of the medians. The centroid is twice as close along any median to the side that the median intersects as it is to the vertex it emanates from. Each median divides the area of the triangle in half; hence the name, and hence a triangular object of uniform density would balance on any median. (Any other lines which divide the area of the triangle into two equal parts do not pass through the centroid.) The three medians divide the triangle into six smaller triangles of equal area. Consider a triangle ABC. Let D be the midpoint of , E be the midpoint of , F be the midpoint of , and O be the centroid (most commonly denoted G). By definition, . Thus and , where represents the area of triangle ; these hold because in each case the two triangles have bases of equal length and share a common altitude from the (extended) base, and a triangle's area equals one-half its base times its height. We have: Thus, and Since , therefore, . Using the same method, one can show that . In 2014 Lee Sallows discovered the following theorem: The medians of any triangle dissect it into six equal area smaller triangles as in the figure above where three adjacent pairs of triangles meet at the midpoints D, E and F. If the two triangles in each such pair are rotated about their common midpoint until they meet so as to share a common side, then the three new triangles formed by the union of each pair are congruent.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.