Related concepts (37)
Representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
Building (mathematics)
In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings (named also after François Bruhat) plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.
Linear algebraic group
In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
Algebraic torus
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory (see Cartan subgroup). For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group .
Glossary of algebraic geometry
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
E8 (mathematics)
DISPLAYTITLE:E8 (mathematics) In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled G2, F4, E6, E7, and E8. The E8 algebra is the largest and most complicated of these exceptional cases.
Claude Chevalley
Claude Chevalley (ʃəvalɛ; 11 February 1909 – 28 June 1984) was a French mathematician who made important contributions to number theory, algebraic geometry, class field theory, finite group theory and the theory of algebraic groups. He was a founding member of the Bourbaki group. His father, Abel Chevalley, was a French diplomat who, jointly with his wife Marguerite Chevalley née Sabatier, wrote The Concise Oxford French Dictionary. Chevalley graduated from the École Normale Supérieure in 1929, where he studied under Émile Picard.
Generalized flag variety
In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space V over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complex flag manifold. Flag varieties are naturally projective varieties. Flag varieties can be defined in various degrees of generality. A prototype is the variety of complete flags in a vector space V over a field F, which is a flag variety for the special linear group over F.
Group of Lie type
In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.
Congruence subgroup
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.