Claude Chevalley (ʃəvalɛ; 11 February 1909 – 28 June 1984) was a French mathematician who made important contributions to number theory, algebraic geometry, class field theory, finite group theory and the theory of algebraic groups. He was a founding member of the Bourbaki group.
His father, Abel Chevalley, was a French diplomat who, jointly with his wife Marguerite Chevalley née Sabatier, wrote The Concise Oxford French Dictionary. Chevalley graduated from the École Normale Supérieure in 1929, where he studied under Émile Picard. He then spent time at the University of Hamburg, studying under Emil Artin and at the University of Marburg, studying under Helmut Hasse. In Germany, Chevalley discovered Japanese mathematics in the person of Shokichi Iyanaga. Chevalley was awarded a doctorate in 1933 from the University of Paris for a thesis on class field theory.
When World War II broke out, Chevalley was at Princeton University. After reporting to the French Embassy, he stayed in the U.S., first at Princeton and then (after 1947) at Columbia University. His American students included Leon Ehrenpreis and Gerhard Hochschild. During his time in the U.S., Chevalley became an American citizen and wrote a substantial part of his lifetime's output in English.
When Chevalley applied for a chair at the Sorbonne, the difficulties he encountered were the subject of a polemical piece by his friend and fellow Bourbakiste André Weil, titled "Science Française?" and published in the Nouvelle Revue Française. Chevalley was the "professeur B" of the piece, as confirmed in the endnote to the reprint in Weil's collected works, Oeuvres Scientifiques, tome II. Chevalley eventually did obtain a position in 1957 at the faculty of sciences of the University of Paris and after 1970 at the Université de Paris VII.
Chevalley had artistic and political interests, and was a minor member of the French non-conformists of the 1930s. The following quote by the co-editor of Chevalley's collected works attests to these interests:
"Chevalley was a member of various avant-garde groups, both in politics and in the arts.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Group representation theory studies the actions of groups on vector spaces. This allows the use of linear algebra to study certain group theoretical questions. In this course the groups in question wi
In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n).
In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.
Explores associativity, Lie algebra, Lie groups, relativity, and symmetry preservation in quantum field theory.
We define and study in terms of integral IwahoriâHecke algebras a new class of geometric operators acting on the Bruhat-Tits building of connected reductive groups over p-adic fields. These operators, which we call U-operators, generalize the geometric n ...