Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Exposing a molecule to an intense light pulse can create a nonstationary quantum state, thus launching correlated dynamics of electrons and nuclei. Although much had been achieved in the understanding of fundamental physics behind the electron-nuclear inte ...
Electromagnetic forces and torques enable many key technologies, including optical tweezers or dielectrophoresis. Interestingly, both techniques rely on the same physical process: the interaction of an oscillating electric field with a particle of matter. ...
Nanocavities formed by ultrathin metallic gaps permitthe reproducibleengineering and enhancement of light-matter interaction, withmode volumes reaching the smallest values allowed by quantum mechanics.While the enhanced vacuum field in metallic nanogaps ha ...
We present an efficient method to compute diffusion coefficients of multiparticle systems with strong interactions directly from the geometry and topology of the potential energy field of the migrating particles. The approach is tested on Li-ion diffusion ...
We consider the effective interaction of quarks with a new GeV-scale vector particle that couples to electroweak gauge bosons by the so-called effective Chern-Simons (CS) interaction. We call this particle the CS boson. We construct effective Lagrangian of ...
Jammed, disordered packings of given sets of particles possess a multitude of equilibrium states with different mechanical properties. Identifying and constructing desired states, e.g., of superior stability, is a complex task. Here, we show that in two-di ...
Strength in numbers, combining many weak interactions into an overall strong connection, is the fundamental principle of multivaleny. This concept has been exploiting for the engineering of super-selective cell-targeting materials, which generally display ...
From a study of the line shape of the X(3872), the LHCb collaboration measures a sizeable negative effective range. This cannot be reconciled with a shallow D (D) over bar* bound state hypothesis. Based on Weinberg's compositeness criterion, together with ...
We study causality in gravitational systems beyond the classical limit. Using on-shell methods, we consider the 1-loop corrections from charged particles to the photon energy-momentum tensor - the self-stress - that controls the quantum interaction between ...
Two-dimensional systems with C2T (PT) symmetry exhibit the Euler class topology E is an element of Z in each two-band subspace realizing a fragile topology beyond the symmetry indicators. By systematically studying the energy levels of Euler insulating pha ...