Anammox, an abbreviation for "anaerobic ammonium oxidation", is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water. The bacteria that perform the anammox process are genera that belong to the bacterial phylum Planctomycetota. The anammox bacteria all possess one anammoxosome, a lipid bilayer membrane-bound compartment inside the cytoplasm in which the anammox process takes place. The anammoxosome membranes are rich in ladderane lipids; the presence of these lipids is so far unique in biology. "Anammox" is also the trademarked name for an anammox-based ammonium removal technology developed by the Delft University of Technology. In this biological process, which is a comproportionation reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water. NH4+ + NO2− → N2 + 2H2O. Globally, this process may be responsible for 30–50% of the N2 gas produced in the oceans. It is thus a major sink for fixed nitrogen and so limits oceanic primary productivity. The bacteria that perform the anammox process belong to the bacterial phylum Planctomycetota. Currently, five anammox genera have been discovered: Brocadia, Kuenenia, Anammoxoglobus, Jettenia (all fresh water species), and Scalindua (marine species). The anammox bacteria are characterized by several striking properties: They all possess one anammoxosome, a membrane bound compartment inside the cytoplasm which is the locus of anammox catabolism. Further, the membranes of these bacteria mainly consist of ladderane lipids so far unique in biology. Of special interest is the conversion to hydrazine (normally used as a high-energy rocket fuel, and poisonous to most living organisms) as an intermediate. A final striking feature of the organism is the extremely slow growth rate; the doubling time is anywhere from 7–22 days.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
ENV-405: Water and wastewater treatment
This course on water and wastewater treatment shows how to implement and design different methods and techniques to eliminate organic matter, nitrogen and phosporous from wastewater, and how to apply
Related lectures (11)
Nitrogen Removal: Nitritation and ANAMMOX
Explores nitrogen removal in WWTPs through nitritation and ANAMMOX, addressing key figures, challenges, and process options for efficient removal.
Nitrogen and Sulfur Cycles in Biogeochemistry
Explores the nitrogen and sulfur cycles, focusing on ammonia oxidation, nitrification, anammox, and microbial networks in different environments.
Sulfur and Nitrogen Cycles
Explores the environmental significance of sulfur and nitrogen cycles, including key microbial processes and organisms involved.
Show more
Related publications (31)
Related concepts (3)
Nitrogen cycle
The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biological and physical processes. Important processes in the nitrogen cycle include fixation, ammonification, nitrification, and denitrification. The majority of Earth's atmosphere (78%) is atmospheric nitrogen, making it the largest source of nitrogen.
Nitrification
Nitrification is the biological oxidation of ammonia to nitrite followed by the oxidation of the nitrite to nitrate occurring through separate organisms or direct ammonia oxidation to nitrate in comammox bacteria. The transformation of ammonia to nitrite is usually the rate limiting step of nitrification. Nitrification is an important step in the nitrogen cycle in soil. Nitrification is an aerobic process performed by small groups of autotrophic bacteria and archaea.
Nitrite
The nitrite ion has the chemical formula NO2-. Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name nitrite also refers to organic compounds having the –ONO group, which are esters of nitrous acid. Sodium nitrite is made industrially by passing a mixture of nitrogen oxides into aqueous sodium hydroxide or sodium carbonate solution: The product is purified by recrystallization.
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.