Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In statistical mechanics, the microcanonical ensemble is a statistical ensemble that represents the possible states of a mechanical system whose total energy is exactly specified. The system is assumed to be isolated in the sense that it cannot exchange energy or particles with its environment, so that (by conservation of energy) the energy of the system does not change with time. The primary macroscopic variables of the microcanonical ensemble are the total number of particles in the system (symbol: N), the system's volume (symbol: V), as well as the total energy in the system (symbol: E). Each of these is assumed to be constant in the ensemble. For this reason, the microcanonical ensemble is sometimes called the NVE ensemble. In simple terms, the microcanonical ensemble is defined by assigning an equal probability to every microstate whose energy falls within a range centered at E. All other microstates are given a probability of zero. Since the probabilities must add up to 1, the probability P is the inverse of the number of microstates W within the range of energy, The range of energy is then reduced in width until it is infinitesimally narrow, still centered at E. In the limit of this process, the microcanonical ensemble is obtained. Because of its connection with the elementary assumptions of equilibrium statistical mechanics (particularly the postulate of a priori equal probabilities), the microcanonical ensemble is an important conceptual building block in the theory. It is sometimes considered to be the fundamental distribution of equilibrium statistical mechanics. It is also useful in some numerical applications, such as molecular dynamics. On the other hand, most nontrivial systems are mathematically cumbersome to describe in the microcanonical ensemble, and there are also ambiguities regarding the definitions of entropy and temperature. For these reasons, other ensembles are often preferred for theoretical calculations.
Nicola Marzari, Tommaso Chiarotti, Giuliana Materzanini
Silvestro Micera, Michael Lassi