Concept

Endothelial progenitor cell

Summary
Endothelial progenitor cell (or EPC) is a term that has been applied to multiple different cell types that play roles in the regeneration of the endothelial lining of blood vessels. Outgrowth endothelial cells are an EPC subtype committed to endothelial cell formation. Despite the history and controversy, the EPC in all its forms remains a promising target of regenerative medicine research. Developmentally, the endothelium arises in close contact with the hematopoietic system. This, and the existence of hemogenic endothelium, led to a belief and search for adult hemangioblast- or angioblast-like cells; cells which could give rise to functional vasculature in adults. The existence of endothelial progenitor cells has been posited since the mid-twentieth century, however their existence was not confirmed until the 1990s when Asahara et al. published the discovery of the first putative EPC. Recently, controversy has developed over the definition of true endothelial progenitors. Although bone marrow-derived cells do appear to localize to injured vessels and promote an angiogenic switch, other studies have suggested these cells do not contribute directly to the functional endothelium, instead acting via paracrine methods to provide support for the resident endothelial cells. While some other authors have contested these, and maintained that they are true EPCs, many investigators have begun to term these cells colony forming unit-Hill cells (CFU-Hill) or circulating angiogenic cells (CAC) instead (depending on the method of isolation), highlighting their role as hematopoietic myeloid cells involved in promoting new vessel growth. Molecular genetic analysis of early outgrowth putative EPC populations suggests they do indeed have monocyte-like expression patterns, and support the existence of a separate population of progenitors, the late outgrowth, or endothelial colony forming cell (ECFC). Furthermore, early outgrowth cells maintain other monocyte functions such as high Dil-Ac-LDL and India ink uptake and low eNOS expression.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
BIO-392: Oncology
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
BIOENG-399: Immunoengineering
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
Show more
Related lectures (14)
Tumor Angiogenesis and Anti-Angiogenic Therapy
Explores tumor angiogenesis, VEGFA's role, anti-angiogenic therapy efficacy, and resistance mechanisms.
Material Engineering in Cancer Immunotherapy
Covers the evasion of immune pressure by tumors, cancer immunotherapies, drug delivery strategies, and the impact of nanoparticle characteristics on tumor penetration.
Show more
Related publications (80)

Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization

Georges Wagnières, Jaroslava Joniová, Séverine Marguerite Urfer

Therapies to accelerate vascular repair are currently lacking. Pre-clinical studies suggest that hydrogen sulfide (H2S), an endogenous gasotransmitter, promotes angiogenesis. Here, we hypothesized that sodium thiosulfate (STS), a clinically relevant source ...
FRONTIERS MEDIA SA2022

The angiopoietin-Tie2 pathway regulates Purkinje cell dendritic morphogenesis in a cell-autonomous manner

Michele De Palma

Neuro-vascular communication is essential to synchronize central nervous system development. Here, we identify angiopoietin/Tie2 as a neuro-vascular signaling axis involved in regulating dendritic morphogenesis of Purkinje cells (PCs). We show that in the ...
CELL PRESS2021

Increasing heart vascularisation after myocardial infarction using brain natriuretic peptide stimulation of endothelial and WT1(+) epicardial cells

Na Li

Brain natriuretic peptide (BNP) treatment increases heart function and decreases heart dilation after myocardial infarction (MI). Here, we investigated whether part of the cardioprotective effect of BNP in infarcted hearts related to improved neovascularis ...
ELIFE SCIENCES PUBLICATIONS LTD2020
Show more
Related concepts (1)
Angiogenesis
Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature mainly by processes of sprouting and splitting, but processes such as coalescent angiogenesis, vessel elongation and vessel cooption also play a role. Vasculogenesis is the embryonic formation of endothelial cells from mesoderm cell precursors, and from neovascularization, although discussions are not always precise (especially in older texts).