Summary
In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation where ∇2 is the Laplace operator, k2 is the eigenvalue, and f is the (eigen)function. When the equation is applied to waves, k is known as the wave number. The Helmholtz equation has a variety of applications in physics, including the wave equation and the diffusion equation, and it has uses in other sciences. The Helmholtz equation often arises in the study of physical problems involving partial differential equations (PDEs) in both space and time. The Helmholtz equation, which represents a time-independent form of the wave equation, results from applying the technique of separation of variables to reduce the complexity of the analysis. For example, consider the wave equation Separation of variables begins by assuming that the wave function u(r, t) is in fact separable: Substituting this form into the wave equation and then simplifying, we obtain the following equation: Notice that the expression on the left side depends only on r, whereas the right expression depends only on t. As a result, this equation is valid in the general case if and only if both sides of the equation are equal to the same constant value. This argument is key in the technique of solving linear partial differential equations by separation of variables. From this observation, we obtain two equations, one for A(r), the other for T(t): where we have chosen, without loss of generality, the expression −k2 for the value of the constant. (It is equally valid to use any constant k as the separation constant; −k2 is chosen only for convenience in the resulting solutions.) Rearranging the first equation, we obtain the Helmholtz equation: Likewise, after making the substitution ω = kc, where k is the wave number, and ω is the angular frequency (assuming a monochromatic field), the second equation becomes We now have Helmholtz's equation for the spatial variable r and a second-order ordinary differential equation in time.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.