Summary
In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if is the linear differential operator, then the Green's function is the solution of the equation , where is Dirac's delta function; the solution of the initial-value problem is the convolution (). Through the superposition principle, given a linear ordinary differential equation (ODE), , one can first solve , for each s, and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of L. Green's functions are named after the British mathematician George Green, who first developed the concept in the 1820s. In the modern study of linear partial differential equations, Green's functions are studied largely from the point of view of fundamental solutions instead. Under many-body theory, the term is also used in physics, specifically in quantum field theory, aerodynamics, aeroacoustics, electrodynamics, seismology and statistical field theory, to refer to various types of correlation functions, even those that do not fit the mathematical definition. In quantum field theory, Green's functions take the roles of propagators. A Green's function, G(x,s), of a linear differential operator acting on distributions over a subset of the Euclidean space , at a point s, is any solution of where δ is the Dirac delta function. This property of a Green's function can be exploited to solve differential equations of the form If the kernel of L is non-trivial, then the Green's function is not unique. However, in practice, some combination of symmetry, boundary conditions and/or other externally imposed criteria will give a unique Green's function. Green's functions may be categorized, by the type of boundary conditions satisfied, by a Green's function number. Also, Green's functions in general are distributions, not necessarily functions of a real variable.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.