Summary
Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions. An unambiguous definition of "groundwater model" is difficult to give, but there are many common characteristics. A groundwater model may be a scale model or an electric model of a groundwater situation or aquifer. Groundwater models are used to represent the natural groundwater flow in the environment. Some groundwater models include (chemical) quality aspects of the groundwater. Such groundwater models try to predict the fate and movement of the chemical in natural, urban or hypothetical scenario. Groundwater models may be used to predict the effects of hydrological changes (like groundwater pumping or irrigation developments) on the behavior of the aquifer and are often named groundwater simulation models. Groundwater models are used in various water management plans for urban areas. As the computations in mathematical groundwater models are based on groundwater flow equations, which are differential equations that can often be solved only by approximate methods using a numerical analysis, these models are also called mathematical, numerical, or computational groundwater models. The mathematical or the numerical models are usually based on the real physics the groundwater flow follows. These mathematical equations are solved using numerical codes such as MODFLOW, ParFlow, HydroGeoSphere, OpenGeoSys etc. Various types of numerical solutions like the finite difference method and the finite element method are discussed in the article on "Hydrogeology". For the calculations one needs inputs like: hydrological inputs, operational inputs, external conditions: initial and boundary conditions, (hydraulic) parameters. The model may have chemical components like water salinity, soil salinity and other quality indicators of water and soil, for which inputs may also be needed. The primary coupling between groundwater and hydrological inputs is the unsaturated zone or vadose zone.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.