**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Chirality (physics)

Summary

A chiral phenomenon is one that is not identical to its (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry.
Chirality and helicity
Helicity (particle physics)
The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion. It is negative (“left-handed”) if the directions of spin and motion are opposite. So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards.
Mathematically, helicity is the sign of the projection of the spin vector onto the momentum vector: “left” is negative, “right” is positive.
The chirality

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people

Related units

No results

No results

Related courses (8)

Related publications (27)

PHYS-415: Particle physics I

Presentation of particle properties, their symmetries and interactions.
Introduction to quantum electrodynamics and to the Feynman rules.

PHYS-101(g): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de prévoir quantitativement les conséquences de ces phénomènes avec des outils théoriques appropriés.

PHYS-416: Particle physics II

Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the Standard Model.

Loading

Loading

Loading

Related lectures (15)

Related concepts (76)

Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and cla

Weak interaction

In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others

Elementary particle

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen

The first part of this thesis is devoted to classical magnetic systems. A method for an exhaustive search of states that do not break any spatial symmetry on a given lattice is presented. New Néel states on the kagome lattice are described. Their static structure factors give a way to analyze experimental results. Some non-coplanar spin orders are the only ground states of Heisenberg Hamiltonians. The chirality is a discrete order parameter and give rise to a finite temperature phase transition, studied on a toy model. We show that Z2 topological defects proliferate near chirality domain walls. The order of the transition (first order or Ising like) depends on the spin interactions. The Schwinger boson mean-field theory (SBMFT) allows us to link classical and quantum spin physics: long-range ordered and disordered phases as topological spin liquids can be described in this frame. Symmetry and the way to impose them are analyzed. Different phases are distinguished by their fluxes. These are gauge invariant quantities having a signification as well in a quantum system as in the classical limit. Visons are quantum excitations that change fluxes. Thus, the Z2 vorticies are their classical limit. By relaxing some symmetry constraints, chiral phases are obtained, whose classical limit sends back to the first chapter of this thesis, and whose disordered phase gives chiral spin liquids. The example of the Dzyaloshinskii-Moriya interaction on the kagome lattice is studied.

We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground-and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

Philip Johannes Walter Moll, Mathieu François Padlewski, Matthias Carsten Putzke, Hao Yang

Whereas electron-phonon scattering relaxes the electron's momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2 with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid. It was predicted that in the regime of strong electron-phonon interactions, electrons and phonons can form a coupled non-equilibrium state, characterized by the conservation of the total momentum and by hydrodynamic transport. Here, the authors report experimental evidence for such a coupled electron-phonon liquid in NbGe2.