Congruence (geometry)In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the of the other. More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object.
GradianIn trigonometry, the gradian, also known as the gon (from gōnía), grad, or grade, is a unit of measurement of an angle, defined as one hundredth of the right angle; in other words, there are 100 gradians in 90 degrees. It is equivalent to 1/400 of a turn, 9/10 of a degree, or pi/200 of a radian. Measuring angles in gradians is said to employ the centesimal system of angular measurement, initiated as part of metrication and decimalisation efforts.
Convex polygonIn geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points. A strictly convex polygon is a convex polygon such that no line contains two of its edges.
Internal and external anglesIn geometry, an angle of a polygon is formed by two adjacent sides. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an (or interior angle) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex. If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex.
Circular arcA circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than pi radians (180 degrees); and the other arc, the major arc, subtends an angle greater than pi radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle.
PhiPhi (faɪ; uppercase Φ, lowercase φ or φ; φεῖ pheî phéî̯; Modern Greek: φι fi fi) is the twenty-first letter of the Greek alphabet. In Archaic and Classical Greek (c. 9th century BC to 4th century BC), it represented an aspirated voiceless bilabial plosive ([ph]), which was the origin of its usual romanization as . During the later part of Classical Antiquity, in Koine Greek (c. 4th century BC to 4th century AD), its pronunciation shifted to that of a voiceless bilabial fricative ([ɸ]), and by the Byzantine Greek period (c.
Subtended angleIn geometry, an angle is subtended by an arc, line segment or any other section of a curve when its two rays pass through the endpoints of that arc, line segment or curve section. Conversely, the arc, line segment or curve section confined within the rays of an angle is regarded as the corresponding subtension of that angle. It is also sometimes said that an arc is intercepted or enclosed by that angle. The precise meaning varies with context. For example, one may speak of the angle subtended by an arc of a circle when the angle's vertex is the centre of the circle.
ClockwiseTwo-dimensional rotation can occur in two possible directions. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is (in Commonwealth English) anticlockwise (ACW) or (in North American English) counterclockwise (CCW). Before clocks were commonplace, the terms "sunwise" and "deasil", "deiseil" and even "deocil" from the Scottish Gaelic language and from the same root as the Latin "dexter" ("right") were used for clockwise.
Atan2In computing and mathematics, the function atan2 is the 2-argument arctangent. By definition, is the angle measure (in radians, with ) between the positive -axis and the ray from the origin to the point in the Cartesian plane. Equivalently, is the argument (also called phase or angle) of the complex number The function first appeared in the programming language Fortran in 1961. It was originally intended to return a correct and unambiguous value for the angle θ in converting from Cartesian coordinates (x, y) to polar coordinates (r, θ).
Transversal (geometry)In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, consecutive exterior angles, corresponding angles, and alternate angles. As a consequence of Euclid's parallel postulate, if the two lines are parallel, consecutive interior angles are supplementary, corresponding angles are equal, and alternate angles are equal.