In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. A Euclidean vector is frequently represented by a directed line segment, or graphically as an arrow connecting an initial point A with a terminal point B, and denoted by .
A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier". It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B. Many algebraic operations on real numbers such as addition, subtraction, multiplication, and negation have close analogues for vectors, operations which obey the familiar algebraic laws of commutativity, associativity, and distributivity. These operations and associated laws qualify Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space.
Vectors play an important role in physics: the velocity and acceleration of a moving object and the forces acting on it can all be described with vectors. Many other physical quantities can be usefully thought of as vectors. Although most of them do not represent distances (except, for example, position or displacement), their magnitude and direction can still be represented by the length and direction of an arrow. The mathematical representation of a physical vector depends on the coordinate system used to describe it. Other vector-like objects that describe physical quantities and transform in a similar way under changes of the coordinate system include pseudovectors and tensors.
The vector concept, as we know it today, is the result of a gradual development over a period of more than 200 years. About a dozen people contributed significantly to its development.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming.
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product.
Background: Static posterior subluxation of the humeral head (SPSH) results in glenohumeral osteoarthritis. Treatment strategies for SPSH with or without resulting osteoarthritis remain challenging. There is growing interest in evaluating the rotator cuff ...
In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...