John Frank Adams (5 November 1930 – 7 January 1989) was a British mathematician, one of the major contributors to homotopy theory.
He was born in Woolwich, a suburb in south-east London, and attended Bedford School. He began research as a student of Abram Besicovitch, but soon switched to algebraic topology. He received his PhD from the University of Cambridge in 1956. His thesis, written under the direction of Shaun Wylie, was titled On spectral sequences and self-obstruction invariants. He held the Fielden Chair at the University of Manchester (1964–1970), and became Lowndean Professor of Astronomy and Geometry at the University of Cambridge (1970–1989). He was elected a Fellow of the Royal Society in 1964.
His interests included mountaineering—he would demonstrate how to climb right round a table at parties (a Whitney traverse)—and the game of Go.
He died in a car crash in Brampton. There is a memorial plaque for him in the Chapel of Trinity College, Cambridge.
In the 1950s, homotopy theory was at an early stage of development, and unsolved problems abounded. Adams made a number of important theoretical advances in algebraic topology, but his innovations were always motivated by specific problems. Influenced by the French school of Henri Cartan and Jean-Pierre Serre, he reformulated and strengthened their method of killing homotopy groups in spectral sequence terms, creating the basic tool of stable homotopy theory now known as the Adams spectral sequence. This begins with Ext groups calculated over the ring of cohomology operations, which is the Steenrod algebra in the classical case. He used this spectral sequence to attack the celebrated Hopf invariant one problem, which he completely solved in a 1960 paper by making a deep analysis of secondary cohomology operations. The Adams–Novikov spectral sequence is an analogue of the Adams spectral sequence using an extraordinary cohomology theory in place of classical cohomology: it is a computational tool of great potential scope.
Adams was also a pioneer in the application of K-theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Adams spectral sequence is a spectral sequence introduced by which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre. For everything below, once and for all, we fix a prime p.
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.
In algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod cohomology. For a given prime number , the Steenrod algebra is the graded Hopf algebra over the field of order , consisting of all stable cohomology operations for mod cohomology. It is generated by the Steenrod squares introduced by for , and by the Steenrod reduced th powers introduced in and the Bockstein homomorphism for . The term "Steenrod algebra" is also sometimes used for the algebra of cohomology operations of a generalized cohomology theory.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
The goal of the course is to learn how to construct and calculate with spectral sequences. We will cover the construction and introductory computations of some common and famous spectral sequences.
Covers the concept of Steenrod Squares and their applications in stable cohomology operations.
Explores cup products, Bockstein homomorphisms, and Steenrod algebra in cohomology.
Covers the cup product in cohomology, focusing on examples and computations.
The starting point for this project is the article of Kathryn Hess [11]. In this article, a homotopic version of monadic descent is developed. In the classical setting, one constructs a category D(𝕋) of coalgebras in the Eilenberg-Moore category of ...
EPFL2011
In this paper we elaborate a general homotopy-theoretic framework in which to study problems of descent and completion and of their duals, codescent and cocompletion. Our approach to homotopic (co)descent and to derived (co)completion can be viewed as $\in ...