In physics, a parity transformation (also called parity inversion) is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection): It can also be thought of as a test for chirality of a physical phenomenon, in that a parity inversion transforms a phenomenon into its mirror image. All fundamental interactions of elementary particles, with the exception of the weak interaction, are symmetric under parity. The weak interaction is chiral and thus provides a means for probing chirality in physics. In interactions that are symmetric under parity, such as electromagnetism in atomic and molecular physics, parity serves as a powerful controlling principle underlying quantum transitions. A matrix representation of P (in any number of dimensions) has determinant equal to −1, and hence is distinct from a rotation, which has a determinant equal to 1. In a two-dimensional plane, a simultaneous flip of all coordinates in sign is not a parity transformation; it is the same as a 180° rotation. In quantum mechanics, wave functions that are unchanged by a parity transformation are described as even functions, while those that change sign under a parity transformation are odd functions. Representation theory of SU(2) Under rotations, classical geometrical objects can be classified into scalars, vectors, and tensors of higher rank. In classical physics, physical configurations need to transform under representations of every symmetry group. Quantum theory predicts that states in a Hilbert space do not need to transform under representations of the group of rotations, but only under projective representations. The word projective refers to the fact that if one projects out the phase of each state, where we recall that the overall phase of a quantum state is not observable, then a projective representation reduces to an ordinary representation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (16)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-471: Particle physics: the flavour frontiers
This course will present experimental aspects of flavour physics primarily in the quark sector but also in the lepton sector and their role in the development of the Standard Model of particle physics
Show more
Related lectures (32)
Quantum Field Theory: Lecture 3
Covers the concept of party wavefunctions and the reduction formulae.
Discrete Symmetries Introduction
Introduces discrete symmetries, operators, and tetraquarks in quantum field theory.
The Weak Interaction
Explores parity, intrinsic particle parities, V-A structure, chiral and helicity properties, and evidence for the V-A nature of weak interactions.
Show more
Related publications (120)

Strong coupling between a microwave photon and a singlet-triplet qubit

Pasquale Scarlino, Jann Hinnerk Ungerer

Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate ...
Nature Portfolio2024

Critical Schrodinger Cat Qubit

Vincenzo Savona, Fabrizio Minganti, Luca Gravina

Encoding quantum information onto bosonic systems is a promising route to quantum error correc-tion. In a cat code, this encoding relies on the confinement of the dynamics of the system onto the two-dimensional manifold spanned by Schrodinger cats of oppos ...
AMER PHYSICAL SOC2023
Show more
Related concepts (26)
Spin (physics)
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be understood as in the "rotating internal mass" sense: spin is a quantized wave property. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum.
Angular acceleration
In physics, angular acceleration (symbol α, alpha) is the time rate of change of angular velocity. Following the two types of angular velocity, spin angular velocity and orbital angular velocity, the respective types of angular acceleration are: spin angular acceleration, involving a rigid body about an axis of rotation intersecting the body's centroid; and orbital angular acceleration, involving a point particle and an external axis. Angular acceleration has physical dimensions of angle per time squared, measured in SI units of radians per second squared (rads-2).
Quantum number
In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be known with precision at the same time as the system's energy—and their corresponding eigenspaces. Together, a specification of all of the quantum numbers of a quantum system fully characterize a basis state of the system, and can in principle be measured together.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.