A water supply network or water supply system is a system of engineered hydrologic and hydraulic components that provide water supply. A water supply system typically includes the following:
A drainage basin (see water purification – sources of drinking water)
A raw water collection point (above or below ground) where the water accumulates, such as a lake, a river, or groundwater from an underground aquifer. Raw water may be transferred using uncovered ground-level aqueducts, covered tunnels, or underground water pipes to water purification facilities.
Water purification facilities. Treated water is transferred using water pipes (usually underground).
Water storage facilities such as reservoirs, water tanks, or water towers. Smaller water systems may store the water in cisterns or pressure vessels. Tall buildings may also need to store water locally in pressure vessels in order for the water to reach the upper floors.
Additional water pressurizing components such as pumping stations may need to be situated at the outlet of underground or aboveground reservoirs or cisterns (if gravity flow is impractical).
A pipe network for distribution of water to consumers (which may be private houses or industrial, commercial, or institution establishments) and other usage points (such as fire hydrants)
Connections to the sewers (underground pipes, or aboveground ditches in some developing countries) are generally found downstream of the water consumers, but the sewer system is considered to be a separate system, rather than part of the water supply system.
Water supply networks are often run by public utilities of the water industry.
Raw water (untreated) is from a surface water source (such as an intake on a lake or a river) or from a groundwater source (such as a water well drawing from an underground aquifer) within the watershed that provides the water resource.
The raw water is transferred to the water purification facilities using uncovered aqueducts, covered tunnels or underground water pipes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.
Les systèmes eaux et déchets en Suisse: du traitement end-of-pipe à la fermeture des cycles. Principes de l'adduction, de l'évacuation et du traitement des eaux. Bases du dimensionnement des ouvrages,
Les aménagements hydrauliques sont indispensable pour garantir l'approvisionnement en énergie écophile et renouvelable, de même que l'approvisionnement en eau de bonne qualité et en quantité suffisant
Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. 97% of the water on Earth is salt water and only three percent is fresh water; slightly over two-thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and frozen water.
A water tower is an elevated structure supporting a water tank constructed at a height sufficient to pressurize a distribution system for potable water, and to provide emergency storage for fire protection. Water towers often operate in conjunction with underground or surface service reservoirs, which store treated water close to where it will be used. Other types of water towers may only store raw (non-potable) water for fire protection or industrial purposes, and may not necessarily be connected to a public water supply.
Public works are a broad category of infrastructure projects, financed and procured by a government body for recreational, employment, and health and safety uses in the greater community. They include public buildings (municipal buildings, schools, and hospitals), transport infrastructure (roads, railroads, bridges, pipelines, canals, ports, and airports), public spaces (public squares, parks, and beaches), public services (water supply and treatment, sewage treatment, electrical grid, and dams), and other, usually long-term, physical assets and facilities.
Explores water distribution networks, emphasizing water demand estimation and pressure analysis, essential for designing efficient water-supply systems.
Explores hydraulic construction platforms, high waterfalls, and hydroelectric balancing systems, emphasizing the importance of equilibrium chambers and water supply elements.
We propose a comparative study of three different methods aimed at optimizing existing groundwater monitoring networks. Monitoring piezometric heads in subsurface porous formations is crucial at regional scales to properly characterize the relevant subsurf ...
To inform the development of global wastewater monitoring systems, we surveyed programmes in 43 countries. Most programmes monitored predominantly urban populations. In high-income countries (HICs), composite sampling at centralised treatment plants was mo ...
Incidents where water networks are contaminated with microorganisms or pollutants can result in a large number of infected or ill persons, and it is therefore important to quickly detect, localize and estimate the spread and source of the contamination. In ...