Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.
First-generation biofuels are made from sugar-starch feedstocks (e.g., sugarcane and corn) and edible oil feedstocks (e.g., rapeseed and soybean oil), which are generally converted into bioethanol and biodiesel, respectively.
Second-generation biofuels are made from different feedstocks and therefore may require different technology to extract useful energy from them. Second generation feedstocks include lignocellulosic biomass or woody crops, agricultural residues or waste, as well as dedicated non-food energy crops grown on marginal land unsuitable for food production.
The term second-generation biofuels is used loosely to describe both the 'advanced' technology used to process feedstocks into biofuel, but also the use of non-food crops, biomass and wastes as feedstocks in 'standard' biofuels processing technologies if suitable. This causes some considerable confusion. Therefore it is important to distinguish between second-generation feedstocks and second-generation biofuel processing technologies.
The development of second-generation biofuels has seen a stimulus since the food vs. fuel dilemma regarding the risk of diverting farmland or crops for biofuels production to the detriment of food supply. The biofuel and food price debate involves wide-ranging views, and is a long-standing, controversial one in the literature.
Second-generation biofuel technologies have been developed to enable the use of non-food biofuel feedstocks because of concerns to food security caused by the use of food crops for the production of first-generation biofuels. The diversion of edible food biomass to the production of biofuels could theoretically result in competition with food and land uses for food crops.
First-generation bioethanol is produced by fermenting plant-derived sugars to ethanol, using a similar process to that used in beer and wine-making (see Ethanol fermentation).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The learning outcomes are to get to know the biomass ressources and its characteristics; study of biomass conversion pathways and study of process flow-sheets; establish the flow diagram of an industr
The students assess and compare all renewable energy resources, their real potentials, limitations and best applications (energy services). Solar thermal, solar electric, wood, bioliquids, biogas, hyd
Le cours abordera les grandes problématiques technologiques et socio-économiques liées à la transition énergétique, ainsi que les perspectives et barrières à l'établissement d'un système énergétique d
Food versus fuel is the dilemma regarding the risk of diverting farmland or crops for biofuels production to the detriment of the food supply. The biofuel and food price debate involves wide-ranging views, and is a long-standing, controversial one in the literature. There is disagreement about the significance of the issue, what is causing it, and what can or should be done to remedy the situation. This complexity and uncertainty is due to the large number of impacts and feedback loops that can positively or negatively affect the price system.
A nonfood crop, also known as industrial crop, is a crop grown to produce goods for manufacturing, for example fibre for clothing, rather than food for consumption. Industrial crops is a designation given to an enterprise that attempts to raise farm sector income, and provide economic development activities for rural areas. Industrial crops also attempt to provide products that can be used as substitutes for imports from other nations.
Biomass to liquid (BtL or BMtL) is a multi-step process of producing synthetic hydrocarbon fuels made from biomass via a thermochemical route. According to a study done by the U.S. Department of Agriculture and the Department of Energy, the United States can produce at least 1.3 billion tons of cellulosic biomass each year without decreasing the amount of biomass needed for food, animal feed, or exports. The Fischer–Tropsch process is used to produce synfuels from gasified biomass.
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer-Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for tran ...
Organic solvents are ubiquitous in industrial and domestic applications from the production of pharmaceuticals to household consumer products. The negative impact of most traditional solvents, especially aprotic types, on the environment, health, and safet ...
The dependency on fossil fuels and their impact on the environment is a matter of great concern for the future sustainability of modern society. The development of the "green" technologies which utilize renewable energy sources is now under investigation. ...